Tutorial 1: Getting started with MCore o
digital futures

WALLENBERG A Vetenskapsradet
. AVAV/ANS] ad b 208
Digital Futures Hub (VR)

Stockholm, December 14, 2022

David Broman, John Wikman, Oscar Eriksson, Financially supported by the
and Viktor Palmkvist Strategic Research.

- Miking Key Contributors (Alphabetic Order)

.. David Broman Theo Puranen Ahfeldt
| Elias Castegren William Ragstad
.. Gizem Caylak Viktor Senderov
Oscar Eriksson Linnea Stjerna
Lars Hummelgren John Wikman
~ Jan Kudlicka Anders Agren Thuné
Daniel Lundén Joey Ohman
Viktor Palmkvist

David Broman

Overview of the Toolchain

Language
Fragments

MLang
Program
@ Translates to

MEXxpr is defined b
(using compositio

DSL Program PB DSLIR
Code Reduces to

Parses to
(using resolvable ambiguity)

Compiler Target

(OCaml, JavaScript or CUDA)

David Broman

Hello World

mexpr Everything in MExpr is an
/ print "Hello world!\n" « expression

In a file, we state

that what comes m1 complle hello.mc Compile and run
next is a Miking ./hello

expression

(mexpr) Hello world!

Is there a better way than just printing
when testing your programs?

Built-in unit tests!

Unit testing

Two parts that are checked
if equal

LI

utest addi 1 2 with 3 1in
()

mi complle myprog.mc —-test

./myprog /

Includes unit testing by
\ adding test flag.

Prints a dot for each
successful test

David Broman

mexpr
utest addi 1 2 with 55 in
()

% Unit test FAILED: FILE "myprog.mc" 4:0-4:25 k%
LHS: 3
RHS: 55

\

After running, shows the
different values.

ke

ek
FKTHY

VETENSKAP
28 OCH KONST 2%

Bsad®

Examples:
integer

intrinsics \

Intrinsics

Built-in functions, always

David Broman

() miking-lang/miking: Miking - t' X +

- » . g & —> C @& github.com/miking-lang/miking
available Click on links to see unit
s ‘= README.md S
tests for different
i ntri nSics |ntrinsics
MCore contains a number of built-in values (intrinsics) and predefined functions
R I n t ege ro pe ra t iO ns: ad d su b mu 1. d iV mOd and constants (part of the standard library). For instance,
R lnt N 1nt N lnt print "Hello\n"
u t es t 10 Wlt N ad d l 6 4 in enems ad d 1t iO n uses the built-in function print which has the type String —> () , i.e., it prints
. . . _ a string and returns the unit type.
. t €3 t 2 0 Wlt 1 SU b 1 3 0 10 in - s bt ra Ct 10n The current documentation of intrinsics is implicit via code containing utest
utest 33 Wlt N muli 3 11 in —— mu 'Lt lpllcat ion expressions. Please see the following files:
. . . , . ‘ o e Bool intrinsi
utest 4 with divi 9 2 in —— division PO
.) . e Integer intrinsics
utest 1 with modi 9 2 in —— modulo

Examples:
string .~

Intrinsics

—— String operations

—— See seq.mc as well. Strings are sequences.

utest concat "This " "is" with "This 1is" 1in

utest get "Hello" 1 with 'e' in

utest subsequence "This is all" 3 6 with "s is a" 1in

utest subsequence "This is all" 3 6 with ['s"'," ','i"','s","

|'|a|] in

¢ Floating-point number intrinsics

e Strings intrinsics

e Sequences intrinsics

 Side effect (printing, 1/O, debugging etc.) intrinsics
e Symbol intrinsics

» Reference intrinsics

e Random number generation intrinsics

e Time intrinsics

| I T . . S —

https://github.com/miking-lang/miking

David Broman

Functions and Let expressions

Binds a value. Note - no side

/ effects (not an assignment)
let x = add1 1 2 in

X

Functions are defined using

Type inference: double has lambdas - anonymous Functions with several arguments
type Int -> Int functions are defined using currying
let double = lam x. muli x 2 in let foo = lam x. lam y. addi X y 1n
utest double 5 with 10 in utest foo 2 3 with 5 in

() ()

Type inference: function foo
has type Int -> Int -> Int

David Broman

If - expressions

If expression (not an if

/ statement)
let X =5 1n

let answer = if (lti x 10) then "yes" else "no" in
utest answer with "yes" 1n

()

If expression is actually
just syntactic sugar for the
core construct match

(which is more expressive)

1f x then el else e2

match x with true then el else e2

David Broman

Recursive functions

recursive
Start and / let fact = lam n.
end of a set if eqi n 0

1c:>f recfursive then 1
unctions else muli n (fact (subi n 1))
1n

utest fact @ with 1 1in
utest fact 4 with 24 1in

()

David Broman

Tuples and Records

Tuples are so called product types Name the elements using records
(elements with potentially different types)
\\\\\n let rl = {age = 42, name = "foobar"} in

et = (addy 1.2, “hi-; 80) in

“Egzi i-? W%EE fh%ﬂ " utest rl.age with 42 in

u . Wl i B | : " T

test . with "foobar" 1in
utest t.2 with 80 in 0 KR

()

Tuples are actually just syntactic
sugar for records

David Broman

Data Types and match expressions

Algebraic data type (sum type)

/

type Tree 1n
con Node : (Tree,Tree) —> Tree in E Example of two constructors:
con Leaf : (Int) —> Tree in Node and Leaf

let tree = Node(Node(Leaf 4, Leaf 2), Leaf 3) in = <—— Example of a tree

recursive
let count = lam tree. i Example: count (sum up) values in
match tree with Node(left,right) then the leaves.

addi (count left) (count right)
else match tree with Leaf v then v . Notehow thematch construct
else error "Unknown node" deconstructs the tree nodes

1n

David Broman

ke

of® T B

el Sequences

% VETENSKAP %

29 OCH KONST 2%
[, ot
LIS

Strings are actually sequences

utest "foo" with L'f','0','0'] in () /

utest concat [1,3,5] [7,9] with [1,3,5,7,9] in () € Concatenation of two sequences

utest match "foobar" with "fo" ++ rest then rest else ""

with "obar" 1in

Matching on sequences

There are other
constructs, such as

Tensors, References etc. https://github.com/miking-lang/miking

Overview of the Toolchain

Language
Fragments

DSL Program >

Parses to
(using resolvable ambiguity)

DSL IR
Code

Reduces to

Compiler Target

(OCaml, JavaScript or CUDA)

David Broman

QE ¥
% VETENSKAP %

29 OCH KONST 2%
[, ot
LIS

syn: defines |"Num Int
extensible /l Add (Expr, Expr)

constructors

sem: define
extensible
functions

/

’,/’}'| Num n => Num n

MLang: Language Fragments and Composition

lang Arith
syn Expr =

sem eval =

| Add (el,e2) —>
match eval el with Num nl1l then
match eval e2 with Num n2 then
Num (addi nl n2)
else error "Not a number"
else error "Not a number"

end

mexpr
use Arith in
utest eval (Add (Num 2, Num 3)) with Num 5 in

()

lang MyBool

syn Expr = \ Independent

True() language
False() fragment, using
If (Expr, Expr, Expr) the same syn and
sem hames
sem eval =

end

True() —> True()

False() —> False()

If(cnd,thn,els) —>

let cndVal = eval cnd in

match cndvVal with True() then eval thn

else match cndVal with False() then eval els

else error "Not a boolean"

use: using a language
fragment in an

expression

Composin

David Broman

lang ArithBool = Arith + MyBool &— together |a%guage

mexpr
use ArithBool 1in
utest eval (Add (If (False(), Num @, Num 5), Num 2))

with Num 7 1n

()

fragments

