An Introduction to the Type System of MCore
Miking Workshop 2025

Anders Agren Thuné

Type Checking MCore

- The current type checker was introduced in 2021 and enabled by default in 2022.

- Implements a lightweight but powerful type system with type inference.

(G Note

Currently, only MExpr code Is type checked.
MLang is type checked after translation to MExpr.

1/ 20

Catching “Obvious” Bugs

- Can you spot the bug?

lang EvalLet
sem eval env =
| TmLet t ->
eval
(insert t.ident (eval t.body) env)
t.inexpr
end

2 /20

Catching “Obvious” Bugs

- Can you spot the bug?

lang EvalLet
sem eval env =
| TmLet t ->
eval
(insert t.ident (eval env t.body) env)
t.inexpr
end

2 /20

The Zoo of MCore Types

Basic Types

let count : Int =5

let shoeSize : Float = 45.9

let letter : Char = 'a'’

let isLetter : Bool = 1SAlpha letter
let foo : Unknown = count

4 | 20

Function Types

let idInt : Int -> Int = lam x. X

let applyn : Int -> (Int -> Int) -> (Int -> Int) =
lam n. lam f.
match n with 0 then
f
else
Llam x. applyn (subi n 1) f (f x)

5/ 20

Sequences

let fib10® : [Int] = [1,1,2,3,5,8,13,21,34,55]
let name : [Char] = "Batman"

let name2 : String = name

6/ 20

Tuples and Records

type Point = (Float, Float)

let subpt : Point -> Point -> Point = lam pl. lam p2.
(subf pl.0 p2.0, subf pl.1 p2.1)

let person : {name : String, age : Int} =
{name = "Spider Man", age = 28}

(G Note

- Tuples are records: Point = {#label"0" : Float, #label"1" : Float}
- Field order doesn’t matter

7/ 20

Algebraic Data Types (syn)

lang Regex
syn Exp =
| RNull () -- 0
| REmpty () -- €
| RChar Char -- a

| ROr {el : Exp, e2 : Exp} -- el | e2

sem deriv : Char -> Exp -> Exp

sem deriv a =

| RChar b -> if eqc a b then REmpty () else RNull ()

| ROr es -> ROr {el = deriv a es.el, e2 = deriv a es.e2}
end

8 /20

Parametric Polymorphism

let id : all a. a -> a =
lam x. X

let applyn : all a. Int -> (a -> a) -> (a -> a) =
lam n. lam f.
match n with 0 then
id
else
Llam x. applyn (subi n 1) f (f x)

9 /20

Advanced Types

First-class Polymorphism

let applyn : all a. Int -> (all b. b ->b) -> (a -> a) =
lam n. lam f.
match n with 0 then
id
else
lam x. applyn (subi n 1) #frozen"f" (f x)

let ex : Int = applyn 5 #frozen"id" 2

1

Based on FreezeML (Emrich et al., PLDI ‘20)
1 /20

Record Polymorphism

let getName : all a. all b::{name : a}. b -> a = -- syntax does not exist :)
lam x. X.name

'Similar to Ohori’'s polymorphic records (Ohori 1995)
12/ 20

Constructor Polymorphism

let getChar : all a::{Exp[< RChar]}. Exp{a} -> Char =
lam re. match re with RChar ¢ then c else never

let getCharOpt : all a::{Exp[>]1}. Exp{a} -> Char =
lam re. match re with RChar c then c else 'a'

Similar to polymorphic variants (Garrigue 1998)
13/ 20

Future Plans

Typed Language Contraction/Extension

- We want a type system at the level of MLang which can manage different versions
of the same datatype from different language fragments.

lang Sugar = Expr
syn Expr =
| TmLet {ident : Name, body : Expr, inexpr : Expr}

sem Desugar : Sugar.Expr -> Expr.Expr =
| TmLet {ident = x, body = tl1l, inexpr = t2} ->
TmApp {lhs = TmAbs {ident = x, body = t1}, rhs = t2}
end

15/ 20

Generalized Algebraic Datatypes

- Generalized algebraic datatypes (GADTs) give more precise and expressive types

lang Effect

syn Eff a =

| Pure a

| Impure (b, b -> Eff a)
end

16 / 20

Composable Effects

Different language fragments work in different contexts and produce different effects
- Type checking / evaluation environments

- Mutable state

- Error handling

We don't want every language fragment to account for every effect explicitly.

17 | 20

Wrapping Up

(Re-)using the Type Checker

- The type checker Is implemented as reusable Miking language fragments

lang MExprTypeCheck =
AppTypeCheck + MatchTypeCheck + ConstTypeCheck + SeqTypeCheck +
RecordTypeCheck + TypeTypeCheck + DataTypeCheck + UtestTypeCheck +
NeverTypeCheck + ExtTypeCheck + PlaceholderTypeCheck + DeclTypeCheck +

19 / 20

- Type checking finds bugs!

- MCore features a lightweight type system with type inference.

- Similar to languages like OCaml or Haskell, but with a focus on extension and
composition.

- More Interesting features planned in the future.

- Try it yourself!

20 / 20

	Type Checking MCore
	Catching "Obvious" Bugs
	The Zoo of MCore Types
	Basic Types
	Function Types
	Sequences
	Tuples and Records
	Algebraic Data Types (syn)
	Parametric Polymorphism

	Advanced Types
	First-class Polymorphism
	Record Polymorphism
	Constructor Polymorphism

	Future Plans
	Typed Language Contraction/Extension
	Generalized Algebraic Datatypes
	Composable Effects

	Wrapping Up
	(Re-)using the Type Checker
	Summary

