
An Introduction to the Type System of MCore
Miking Workshop 2025

Anders Ågren Thuné

Type Checking MCore

• The current type checker was introduced in 2021 and enabled by default in 2022.

• Implements a lightweight but powerful type system with type inference.

Note

Currently, only MExpr code is type checked.

MLang is type checked after translation to MExpr.

1 / 20

Catching “Obvious” Bugs

• Can you spot the bug?

lang EvalLet
 sem eval env =
 | TmLet t ->
 eval
 (insert t.ident (eval t.body) env)
 t.inexpr
end

2 / 20

Catching “Obvious” Bugs

• Can you spot the bug?

lang EvalLet
 sem eval env =
 | TmLet t ->
 eval
 (insert t.ident (eval env t.body) env)
 t.inexpr
end

2 / 20

The Zoo of MCore Types

Basic Types

let count : Int = 5

let shoeSize : Float = 45.9

let letter : Char = 'a'

let isLetter : Bool = isAlpha letter

let foo : Unknown = count

4 / 20

Function Types

let idInt : Int -> Int = lam x. x

let applyn : Int -> (Int -> Int) -> (Int -> Int) =
 lam n. lam f.
 match n with 0 then
 f
 else
 lam x. applyn (subi n 1) f (f x)

5 / 20

Sequences

let fib10 : [Int] = [1,1,2,3,5,8,13,21,34,55]

let name : [Char] = "Batman"

let name2 : String = name

6 / 20

Tuples and Records

type Point = (Float, Float)

let subpt : Point -> Point -> Point = lam p1. lam p2.
 (subf p1.0 p2.0, subf p1.1 p2.1)

let person : {name : String, age : Int} =
 {name = "Spider Man", age = 28}

Note

• Tuples are records: Point = {#label"0" : Float, #label"1" : Float}
• Field order doesn’t matter

7 / 20

Algebraic Data Types (syn)

lang Regex
 syn Exp =
 | RNull () -- Ø
 | REmpty () -- ε
 | RChar Char -- a
 | ROr {e1 : Exp, e2 : Exp} -- e1 | e2

 sem deriv : Char -> Exp -> Exp
 sem deriv a =
 | RChar b -> if eqc a b then REmpty () else RNull ()
 | ROr es -> ROr {e1 = deriv a es.e1, e2 = deriv a es.e2}
end

8 / 20

Parametric Polymorphism

let id : all a. a -> a =
 lam x. x

let applyn : all a. Int -> (a -> a) -> (a -> a) =
 lam n. lam f.
 match n with 0 then
 id
 else
 lam x. applyn (subi n 1) f (f x)

9 / 20

Advanced Types

First-class Polymorphism

let applyn : all a. Int -> (all b. b -> b) -> (a -> a) =
 lam n. lam f.
 match n with 0 then
 id
 else
 lam x. applyn (subi n 1) #frozen"f" (f x)

let _ex : Int = applyn 5 #frozen"id" 2

¹

¹Based on FreezeML (Emrich et al., PLDI ‘20)
11 / 20

Record Polymorphism

let getName : all a. all b::{name : a}. b -> a = -- syntax does not exist :)
 lam x. x.name

¹

¹Similar to Ohori’s polymorphic records (Ohori 1995)
12 / 20

Constructor Polymorphism

let getChar : all a::{Exp[< RChar]}. Exp{a} -> Char =
 lam re. match re with RChar c then c else never

let getCharOpt : all a::{Exp[>]}. Exp{a} -> Char =
 lam re. match re with RChar c then c else 'a'

¹

¹Similar to polymorphic variants (Garrigue 1998)
13 / 20

Future Plans

Typed Language Contraction/Extension

• We want a type system at the level of MLang which can manage different versions
of the same datatype from different language fragments.

lang Sugar = Expr
 syn Expr =
 | TmLet {ident : Name, body : Expr, inexpr : Expr}

 sem Desugar : Sugar.Expr -> Expr.Expr =
 | TmLet {ident = x, body = t1, inexpr = t2} ->
 TmApp {lhs = TmAbs {ident = x, body = t1}, rhs = t2}
end

15 / 20

Generalized Algebraic Datatypes

• Generalized algebraic datatypes (GADTs) give more precise and expressive types

lang Effect
 syn Eff a =
 | Pure a
 | Impure (b, b -> Eff a)
end

16 / 20

Composable Effects

Different language fragments work in different contexts and produce different effects

• Type checking / evaluation environments

• Mutable state

• Error handling

We don’t want every language fragment to account for every effect explicitly.

17 / 20

Wrapping Up

(Re-)using the Type Checker

• The type checker is implemented as reusable Miking language fragments

lang MExprTypeCheck =
 AppTypeCheck + MatchTypeCheck + ConstTypeCheck + SeqTypeCheck +
 RecordTypeCheck + TypeTypeCheck + DataTypeCheck + UtestTypeCheck +
 NeverTypeCheck + ExtTypeCheck + PlaceholderTypeCheck + DeclTypeCheck +
 ...

19 / 20

Summary

• Type checking finds bugs!

• MCore features a lightweight type system with type inference.

• Similar to languages like OCaml or Haskell, but with a focus on extension and
composition.

• More interesting features planned in the future.

• Try it yourself!

20 / 20

	Type Checking MCore
	Catching "Obvious" Bugs
	The Zoo of MCore Types
	Basic Types
	Function Types
	Sequences
	Tuples and Records
	Algebraic Data Types (syn)
	Parametric Polymorphism

	Advanced Types
	First-class Polymorphism
	Record Polymorphism
	Constructor Polymorphism

	Future Plans
	Typed Language Contraction/Extension
	Generalized Algebraic Datatypes
	Composable Effects

	Wrapping Up
	(Re-)using the Type Checker
	Summary

