TREEPPL - A

MIINIC

PHYLOG

DSL TN
-OR

=N

- 11CS

Viktor Senderov

https://vsenderov.github.io/2024-miking-workshop-treeppl

Miking Workshop 2024
KTH Campus, Digital Futures Hub, Stockholm, Sweden
4 Dec 2024

https://vsenderov.github.io/2024-miking-workshop-treeppl

RECAP

* Phylogenetic inference

= complex models
= |arge and variable number of r.v.'s

= hard-coded MCMC
e Challenges

= Manual implementation of MCMC
= performance on large data-sets

= cannot do model comparison /
= |ack of validatation
* |n this presentation

= Use Miking to develop a probabilistic
programming language (PPL) aimed
at computational biologists

PROBABILISTIC
PROGRAMMING
WANICIOFACITN

°PPLS AND
BAYESIAN
ANALYSIS

» A probabilistic program
= Bayesian model
= conditional simulation

e Compilation
= static analysis
= statistical inference

Given an abstract problem,
e.g. parameter estimation of a Bayesian model. Difference between
programming and probabilistic programming?

N4

Solution,
e.g. MCMC sampling of the
posterior parameters,
encoded by the programmer.

A 4

Problem, a programmatic
representation of the
Bayesian model as a
conditional simulation,
encoded by the programmer.

Solution, e.g. MCMC sampling

of the posterior parameters,

supplied automatically by the
compiler.

observe assume
likelihood Pprior

posterior distribution P N Y
p(x)
S~~~

normalizing constant

HISTORY OF PPLS IN BIOLOGY

1989 - BUGS (Bayesian inference Using Gibbs e 2016 - RevBayes: PGM-based
Sampling) e 2023 - LinguaPhylo
1997 - WinBUGS e 2024 - BALI-Phy

2005 - PyMC: MCMC-based.

2007 - JAGS (Just Another Gibbs Sampler)

2008 - Church: a Lisp-like PPL, expressiveness,
recursive stochastic functions.

2008 - Infer.NET

2012 - Stan: Hamiltonian Monte Carlo (HMC)
2014 - WebPPL.: a PPL that runs in web browsers.
2016 - Edward (and Edward2): TensorFlow

2020 - Turing.jl: A PPL for Julia

expressi rence power

ease of use

TREEPPL

Download: https://github.com/treeppl/treeppl

Installation and documentation: https://treeppl.org
Pre-print: https://doi.org/10.1101/2023.10.10.561673

https://github.com/treeppl/treeppl
https://treeppl.org/
https://doi.org/10.1101/2023.10.10.561673

The user models, e.g. a regression model, expressed as a
conditional simulation (not the inference!)...

... and supplies the data and the data
manipulation functions.

TreePPL _ EEICCGE CorePPL Results
program”® compiler program Python or R

script*
Nexus, etc. P

' Back-end compilation

i Inference CorePPL .
E runtimes —’ Executable Python or R interpreter

The inference code is then automatically attached to the
program by the compiler.

"HELLO, WORLD!"

1 flip(datapoint: Bool, probability: Real) {
2 observe datapoint ~ Bernoulli(probability);
3}

4

5 model coinModel (coinflips: Bool[]) {
6 assume p ~ Beta(2.0, 2.0);

7 n = length(coinflips);

8 i 1 ton {

) flip(coinflips[i], p);

10 }

Al (P);

=
N
-~

TYPES

e Statically typed language

e Basic datatypes: integer, real, boolean, and string.
e Vectors

e Tensors

e Records

e Sum types (a type of algebraic data type)

1 type Tree =
2 | Leaf {age: Real}
3 | Node {left: Tree, right: Tree, age: Real}

FUNCTIONS

e Can be passed as arguments to other functions

e Anonymous functions supported
e Partial application supported

1 model example(): () {
2 c = 10;
3 X = sapply(l to 5, (i: Int) {
4 addi(c, 1i);
5 })i
6 }
1
2 evolveMessage = evolveMessageClosure(m, t, u);

w

ret = sapply(messages, evolveMessage);

DATA MODEL

e Variables are immutable
e Shadowing is allowed

1 model shadowing(): () {
2 x = 200;

3 printLn(int2string(x));

4 () A

5 x = 300;

6 printLn(int2string(x));
7 }

8 printLn(int2string(x));

9 .
10 }
11

12

PROBABILISTIC PROGRAMMING

Use the assume keyword to introduce a random variable

assume
assume
assume
assume
assume

O W N

< N X

| N S B B

Beta(a, b);

Exponential (rate);
Gamma (shape, scale);
Gaussian(mean, stdDev);
Bernoulli (prob);

TreePPL is a universal PPL

e Number of r.v. does not have to be known in advance
e R..'s can be defined in stochastic recursive functions
e and in stochastic branches (i £'s)

PROBABILISTIC PROGRAMMING 1

Use the observe keyword to condition the likelihood on observed data

observe data ~ Beta(a, b);

observe data ~ Exponential(a, b);
observe data ~ Gamma(shape, scale);
observe data ~ Gaussian(shape, scale);
observe data ~ Bernoulli(prob);

O & W N

PROBABILISTIC PROGRAMMING 2

To manipulate the likelihood directly use weight or logWeight

1 weight(lik);
2 logWeight(1lik);

PROBABILISTIC PROGRAMMING 3

The posterior is the returned value of the model function

STATISTICAL INFERENCE

e importance sampling
e Various sequential Monte Carlo schemas

= pootstrap particle filter (BPF) and the alive
particle filter (APF)

e Various Markov-chain Monte Carlo schemas
= |ightweight MCMC, trace MCMC, naive MCMC

e hybrid schema: particle MCMC-particle independent
Metropolis-Hastings (PMCMC-PIMH)

PATH DEGENERACY

lllustration of path degeneracy

https://awllee.github.io/smc-tutorial/smc-tutorial.html#36

We offer the alive particle filter to combat that.

https://awllee.github.io/smc-tutorial/smc-tutorial.html#36

DELAYED SAMPLING

e A variance-minimization technique
e You don't need to sample all r.v.'s in a model

Letk € Nin
v ~ Gamma(k, ©),
Then, to draw from
n ~ Poisson(vt)

we don't need to sample v explicitly! Instead we can

|

1—|—t6’)

n ~ Negative Bionomial(k,

and then update (backpropagate the belief) about v to

v ~ Gamma(k + n, ﬁ).

FURTHER OPTIMIZATIONS

e Alignment analysis
e Partial CPS transformation

PHYLOGENTICS WITH
TREEPPL

Interfaces to Python and R to use BioPython and
Bioconductor for I/0 and plotting

Tree datatypes and associated functions in standard
library

Inference methods and optimizations very useful for
phylogenetic problems

Example models

MACROEVOLUTIONARY DIVERSIFICATION MODELS

TDBD

ClaDS1

u=0
a=1
¥ o—0

ClaDS0 CRBD

a=1
o—0

AnaDS/BDD

MESSAGE-PASSING LIKELIHOOD CALCULATION

1. Fora gene of length N, we compute

: : 1
the s-jump fraction u « >

2. Foreach nucleotide i € {1, ..., N},

1. Sample the number of s-jumps:

root

2. Compute the transition probability

matrix after time t using a s

combination of the jump-matrix /, latent state

and the CTMC rate matrix Q,,: y////‘/‘ \
@\’:p
@ py = M &
P.V(t) =], exp(utQ,) Oo

TA.A&| AALALW

3. Add up the s-jumps accumulated over
the gene
ng < Z =11
4. Compute the transition probability

matrix for the phenotype Likelihood computation
Py(t) = J;°exp(AtQy)

| Linear Data |

| Quadratic Data || Cubic Data

3.0 3.5

4.5

5.0

http://100.79.217.116:8888/notebooks/Poly.ipynb

TreePPL source code for the polynomial regression:

1 model poly(data: Real[][]): Int {

2 assume n ~ Poisson(l1l.0);

3

4

5 coeffs = repApply(addi(n, 1), () {

6 assume g ~ Gaussian(0.0, 1.0);

7 g;

8 })i

)
10
11 sigma = 1.0;
12 sapply(data, (datum: Real[]) {
13 predictedY = polynomialFunction(coeffs, datum[1l]);
14 observe datum[2] ~ Gaussian(predictedY, sigma);
15 })i
16
17 n;
18 }

Not shown: a function polynomialFunction that evaluates a polynomial as

specified by a coefficient vector at a given data point.

http://100.79.217.116:8888/notebooks/Poly.ipynb

e TreePPL: a DSL built on top of the Miking platform

universal: stochastic recursion and stochastic
branching

easy syntax

static types (with type inference)

compiled

supports different inference schemas

has a library an interface suitable for biologists

http://treeppl.org/

'S TREEPPL A DSL?Y

YES

Inference powerful enough for
phylogenetics

Syntax based on languages familiar to
phylogeneticists

Interface to Python and R enabling the
use of BioPython and Bioconductor
Examples on website based on
phylogenetic problems

Tree datatypes in the standard library
Developers have knowledge of
phylogenetics

YES, AND ...

SMC and MCMC schemas useful across
domains

C-like syntax familiar to empiricists across
domains

Python and R provide I/O packages
across domains

c I ! b
e-g-finanee

Tree datatypes exist in some domains
Developers would not be able support user
queries from e.g. physics

SOME REFERENCES

i Senderov, Kudlicka, Ronquist et al. "Universal probabilistic
programming offers a powerful approach to statistical
phylogenetics." Communications biology 4.1 (2021): 244.

i Senderov, Kudlicka et al. "TreePPL: A Universal Probabilistic
Programming Language for Phylogenetics." bioRxiv (2023): 2023-
10.

W Kudlicka, Jan, et al. "Probabilistic programming for birth-death
models of evolution using an alive particle filter with delayed
sampling." Uncertainty in Artificial Intelligence. PMLR, 2020.

M8 Lundén, Daniel, et al. "Automatic Alignment in Higher-Order
Probabilistic Programming Languages." ESOP. 2023.

L EF

Daniel Lundén MARIE CURIE

IONS

David Broman

Emma Granqvist
Fredrik Ronquist
Gizem Caylak

Jan Kudlicka
Jerémy Andreoletti

Mariana Braga
Thimothee Virgoulay
Viktor Palmkuvist

THANK YOU

Funded by the EU Horizon 2020 Marie Sktodowska-Curie grant agreement PhyPPL No. 898120,

and by the Swedish Foundation for Strategic Research, as well as Vetenskapsradet (VR).

