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Introduction: Phylogenetics Tree Inference

* Understanding the relation between species
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Introduction: Phylogenetics Tree Inference

* Understanding the relation between species

Which tree is more likely?
* Tree inference is a fundamental problem

What is the likelihood of each possible tree?
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Introduction: Phylogenetics Tree Inference

* Understanding the relation between species

* Tree inference is a fundamental problem

* Using genetic data makes the problem harder

The figure is retrieved from: Kawahara, AY., Storer, C., Carvalho, A.P.S. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and
biogeographic origins. Nat Ecol Evol 7, 903—913 (2023). https://doi.org/10.1038/s41559-023-02041-9
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Naive Backward Tree Inference Problem

- - DOOO @@

The likelihood of observing C at Ly and L,
given At, and the

- Internal nodes are latent (unobserved)
S 1000 - We sample them during inference
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Propagate the messages to the root to
calculate the likelihood of observations
given the tree topology

Marginalize out the internal nodes:

Intuitively, we sum over all possible states that the
internal node can take, weighted by their probabilities.
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Phylogenetic tools

MrBayes

RevBayes Efficient; however:
- Hardcoded into the model
- Restricted language

Beast




by

e
BT
EXKTHY
VETENSKAP
28 OCH KONST 2%

s

Probabilistic Programming Languages

* PPLs provide flexibility.
* However, flexibility makes it hard to implement domain-specific optimizations like pruning.

Probabilistic program

l

User Interaction: Annotate

with prune and pruned
and with PrunelInt type.

1

Annotated probabilistic progra

Contains runtime con-

m‘ Runtime System:
structs and functions.

Compiler System

Y

Replace annotated -
ANF trans- . Inclusion of
. — constructs with > .
formation . . runtime system !
runtime equivalents |
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Pruned probabilistic program
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Probabilistic Programming Languages

* PPLs provide flexibility - users write models without worrying about inference details.
* However, flexibility makes it hard to implement domain-specific optimizations like pruning.

(...)
con Node:{age: Float, seq: left: Tree, right: Tree} -> Tree

con Leaf:{age: Float, seq: [Int]} -> Tree (...)

recursive let cluster = lam trees. lam maxAge. lam seqlLen.(...)
let t = assume (Exponential 10.0) in
let age = addf t maxAge in

let parentSeq = iid (lam p.(Categorical p)) [0.25,0.25,0.25,0.25] seqglLen in

iteri (lam i:Int. lam site iter (lam child.

let deltaT = (subf age (getAge child)) in . . .
let p = ctme((pruned site))deltaT in VVHhere we marginalize out internal nodes
match child with Node n then

let s = get n.seq 1 in

observe | (pruned s))(Categorical p);

cancel (observe|(pruned s)|(Categorical [0.25,0.25,0.25,0.251))
else match child with Leaf 1 in

let s = get 1.seq i in

observe s (Categorical p);

cancel (observe s (Categorical [0.25,0.25,0.25,0.251]))

) [leftChild, rightChild]) parentSeq;
let parent = Node {age=age, seq=parentSeq,left=1leftChild,

right=rightChild} in(...)
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Results

Generalized time reversible model- Primates data
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