
Annotated Automatic Pruning
in Miking CorePPL

Gizem Caylak
Collaborators: David Broman, Emma Granqvist, Fredrik Ronquist, Tim Virgoulay

2025-12-05 1

01. LOGOTYP

Logotypen finns i två olika utföranden. En
mörk och en ljus logotyp. De brukar även
kallas Positiv och Negativ logotyp. Dessa
används beroende på om bakgrunden är
ljus eller mörk.

Logotypen placeras i det hörn som passar
för situationen. Men kan även placeras
centrerad i de fall där logotypen används
i t.ex. en företagspresentation och kräver
större plats.

WALLENBERG AI,
AUTONOMOUS SYSTEMS
AND SOFTWARE PROGRAM

This work was partially supported by the Wallenberg Al, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

Introduction: Phylogenetics Tree Inference
• Understanding the relation between species

Introduction: Phylogenetics Tree Inference
• Understanding the relation between species

Similar colors

Introduction: Phylogenetics Tree Inference
• Understanding the relation between species

Introduction: Phylogenetics Tree Inference
• Understanding the relation between species

Introduction: Phylogenetics Tree Inference
• Understanding the relation between species

Introduction: Phylogenetics Tree Inference
• Understanding the relation between species

• Tree inference is a fundamental problem

What is the likelihood of each possible tree?

Which tree is more likely?

Introduction: Phylogenetics Tree Inference
• Understanding the relation between species

• Tree inference is a fundamental problem

• Using genetic data makes the problem harder

DNA may consist of billions of nucleotides (features)

The figure is retrieved from: Kawahara, A.Y., Storer, C., Carvalho, A.P.S. et al. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and
biogeographic origins. Nat Ecol Evol 7, 903–913 (2023). https://doi.org/10.1038/s41559-023-02041-9

Naive Backward Tree Inference Problem

2025-12-09 9

9

8 Gizem, et al.

condition the 𝐿N1 on the observed value of 𝐿L1 . To calculate this conditional distribution !rst,
delayed sampling uses Baye’s formula in Fig. 3b (red arrow labeled 1 indicates this conditioning):

𝑀 (𝐿N1 |𝐿L1 = A) = 𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)∑
𝐿N1

𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)
(4)

In the right-hand side of this equation, 𝑀 (𝐿L1 |𝐿N1) is given as 𝑁𝑂𝑃 (𝑄𝑃𝑅𝑄 (𝐿𝑀1 |ω𝑃2)) by the model.
Since 𝐿L1 is an observation, we can directly use its value A. This calculation yields to 𝐿N1 |𝐿L1 →
𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓). Subsequently (green arrow labeled 2 in Fig. 3b indicates this marginaliza-
tion), we calculate 𝐿L2 |𝐿L1 → 𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓) using equations 3 and 4. Themarginalization
steps ensure we account for the uncertainty in the latent node 𝐿N1 without sampling it.
Next, Fig. 3c demonstrates the operations delayed sampling performs when we observe 𝐿L3 .

Similar to the previous step, to calculate the marginalized distribution 𝑀 (𝐿𝑁3 |𝐿L1 , 𝐿L2), we need to
marginalize out 𝐿N2 (indicated via green arrow labeled 4) and 𝐿R (indicated via green arrow labeled
3):

𝑀 (𝐿L3 |𝐿L1 , 𝐿L2) =
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 , 𝐿𝑀2 ,𝑆, 𝐿𝑀1 |𝐿L1 , 𝐿L2)

=
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 |𝐿N2)𝑀 (𝐿N2 |𝐿R)𝑀 (𝐿R |𝐿N1 , 𝐿𝑁1 , 𝐿𝑁2)𝑀 (𝐿N1 |𝐿𝑁1 , 𝐿𝑁2)
(5)

Similar to equation 3, we derive the right-most equation using the chain rule, the independence
of 𝐿L3 from its non-descendants given its parent 𝐿N2 , and 𝐿N2 from its non-descendants given its
parent 𝐿R. The right-hand side of this equation requires 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2), conditioning 𝐿𝑂 on 𝐿N1 .
Since this is not provided by the model, delayed sampling requires the value of 𝐿N1 to calculate the
conditioned distribution 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2). Thus, we need to sample it (indicated via the red node).
Delayed sampling samples from internal nodes, making the likelihood calculation of a tree less
e"cient than marginalizing all the internal nodes. While delayed sampling allows marginalization,
the forward nature of the tree construction often requires delayed sampling to sample intermediate
latent variables, which causes ine"ciencies. These challenges necessitate a more e"cient approach
to marginalization.

2.4 Backward Tree Simulation

(a) (b) (c) (d)

Fig. 4. (a) Tree leaves. (b) Randomly select two nodes/leaves (children), sample a coalescence time ω𝑃0, propose
a distribution for the internal node, and observe the children based on the proposed value. (c) Repeat the same
for the next split. (d) We merge the last two nodes, update their distribution based on the root’s proposed
value, and obtain a tree. ↑0.25↓4 indicates a vector of length four where each element is 0.25.

ACM Trans. Probab. Mach. Learn., Vol. 1, No. 1, Article . Publication date: October 2025.

8 Gizem, et al.

condition the 𝐿N1 on the observed value of 𝐿L1 . To calculate this conditional distribution !rst,
delayed sampling uses Baye’s formula in Fig. 3b (red arrow labeled 1 indicates this conditioning):

𝑀 (𝐿N1 |𝐿L1 = A) = 𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)∑
𝐿N1

𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)
(4)

In the right-hand side of this equation, 𝑀 (𝐿L1 |𝐿N1) is given as 𝑁𝑂𝑃 (𝑄𝑃𝑅𝑄 (𝐿𝑀1 |ω𝑃2)) by the model.
Since 𝐿L1 is an observation, we can directly use its value A. This calculation yields to 𝐿N1 |𝐿L1 →
𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓). Subsequently (green arrow labeled 2 in Fig. 3b indicates this marginaliza-
tion), we calculate 𝐿L2 |𝐿L1 → 𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓) using equations 3 and 4. Themarginalization
steps ensure we account for the uncertainty in the latent node 𝐿N1 without sampling it.
Next, Fig. 3c demonstrates the operations delayed sampling performs when we observe 𝐿L3 .

Similar to the previous step, to calculate the marginalized distribution 𝑀 (𝐿𝑁3 |𝐿L1 , 𝐿L2), we need to
marginalize out 𝐿N2 (indicated via green arrow labeled 4) and 𝐿R (indicated via green arrow labeled
3):

𝑀 (𝐿L3 |𝐿L1 , 𝐿L2) =
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 , 𝐿𝑀2 ,𝑆, 𝐿𝑀1 |𝐿L1 , 𝐿L2)

=
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 |𝐿N2)𝑀 (𝐿N2 |𝐿R)𝑀 (𝐿R |𝐿N1 , 𝐿𝑁1 , 𝐿𝑁2)𝑀 (𝐿N1 |𝐿𝑁1 , 𝐿𝑁2)
(5)

Similar to equation 3, we derive the right-most equation using the chain rule, the independence
of 𝐿L3 from its non-descendants given its parent 𝐿N2 , and 𝐿N2 from its non-descendants given its
parent 𝐿R. The right-hand side of this equation requires 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2), conditioning 𝐿𝑂 on 𝐿N1 .
Since this is not provided by the model, delayed sampling requires the value of 𝐿N1 to calculate the
conditioned distribution 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2). Thus, we need to sample it (indicated via the red node).
Delayed sampling samples from internal nodes, making the likelihood calculation of a tree less
e"cient than marginalizing all the internal nodes. While delayed sampling allows marginalization,
the forward nature of the tree construction often requires delayed sampling to sample intermediate
latent variables, which causes ine"ciencies. These challenges necessitate a more e"cient approach
to marginalization.

2.4 Backward Tree Simulation

(a) (b) (c) (d)

Fig. 4. (a) Tree leaves. (b) Randomly select two nodes/leaves (children), sample a coalescence time ω𝑃0, propose
a distribution for the internal node, and observe the children based on the proposed value. (c) Repeat the same
for the next split. (d) We merge the last two nodes, update their distribution based on the root’s proposed
value, and obtain a tree. ↑0.25↓4 indicates a vector of length four where each element is 0.25.

ACM Trans. Probab. Mach. Learn., Vol. 1, No. 1, Article . Publication date: October 2025.

8 Gizem, et al.

condition the 𝐿N1 on the observed value of 𝐿L1 . To calculate this conditional distribution !rst,
delayed sampling uses Baye’s formula in Fig. 3b (red arrow labeled 1 indicates this conditioning):

𝑀 (𝐿N1 |𝐿L1 = A) = 𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)∑
𝐿N1

𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)
(4)

In the right-hand side of this equation, 𝑀 (𝐿L1 |𝐿N1) is given as 𝑁𝑂𝑃 (𝑄𝑃𝑅𝑄 (𝐿𝑀1 |ω𝑃2)) by the model.
Since 𝐿L1 is an observation, we can directly use its value A. This calculation yields to 𝐿N1 |𝐿L1 →
𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓). Subsequently (green arrow labeled 2 in Fig. 3b indicates this marginaliza-
tion), we calculate 𝐿L2 |𝐿L1 → 𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓) using equations 3 and 4. Themarginalization
steps ensure we account for the uncertainty in the latent node 𝐿N1 without sampling it.
Next, Fig. 3c demonstrates the operations delayed sampling performs when we observe 𝐿L3 .

Similar to the previous step, to calculate the marginalized distribution 𝑀 (𝐿𝑁3 |𝐿L1 , 𝐿L2), we need to
marginalize out 𝐿N2 (indicated via green arrow labeled 4) and 𝐿R (indicated via green arrow labeled
3):

𝑀 (𝐿L3 |𝐿L1 , 𝐿L2) =
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 , 𝐿𝑀2 ,𝑆, 𝐿𝑀1 |𝐿L1 , 𝐿L2)

=
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 |𝐿N2)𝑀 (𝐿N2 |𝐿R)𝑀 (𝐿R |𝐿N1 , 𝐿𝑁1 , 𝐿𝑁2)𝑀 (𝐿N1 |𝐿𝑁1 , 𝐿𝑁2)
(5)

Similar to equation 3, we derive the right-most equation using the chain rule, the independence
of 𝐿L3 from its non-descendants given its parent 𝐿N2 , and 𝐿N2 from its non-descendants given its
parent 𝐿R. The right-hand side of this equation requires 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2), conditioning 𝐿𝑂 on 𝐿N1 .
Since this is not provided by the model, delayed sampling requires the value of 𝐿N1 to calculate the
conditioned distribution 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2). Thus, we need to sample it (indicated via the red node).
Delayed sampling samples from internal nodes, making the likelihood calculation of a tree less
e"cient than marginalizing all the internal nodes. While delayed sampling allows marginalization,
the forward nature of the tree construction often requires delayed sampling to sample intermediate
latent variables, which causes ine"ciencies. These challenges necessitate a more e"cient approach
to marginalization.

2.4 Backward Tree Simulation

(a) (b) (c) (d)

Fig. 4. (a) Tree leaves. (b) Randomly select two nodes/leaves (children), sample a coalescence time ω𝑃0, propose
a distribution for the internal node, and observe the children based on the proposed value. (c) Repeat the same
for the next split. (d) We merge the last two nodes, update their distribution based on the root’s proposed
value, and obtain a tree. ↑0.25↓4 indicates a vector of length four where each element is 0.25.

ACM Trans. Probab. Mach. Learn., Vol. 1, No. 1, Article . Publication date: October 2025.

8 Gizem, et al.

condition the 𝐿N1 on the observed value of 𝐿L1 . To calculate this conditional distribution !rst,
delayed sampling uses Baye’s formula in Fig. 3b (red arrow labeled 1 indicates this conditioning):

𝑀 (𝐿N1 |𝐿L1 = A) = 𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)∑
𝐿N1

𝑀 (𝐿L1 = A|𝐿N1)𝑀 (𝐿N1)
(4)

In the right-hand side of this equation, 𝑀 (𝐿L1 |𝐿N1) is given as 𝑁𝑂𝑃 (𝑄𝑃𝑅𝑄 (𝐿𝑀1 |ω𝑃2)) by the model.
Since 𝐿L1 is an observation, we can directly use its value A. This calculation yields to 𝐿N1 |𝐿L1 →
𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓). Subsequently (green arrow labeled 2 in Fig. 3b indicates this marginaliza-
tion), we calculate 𝐿L2 |𝐿L1 → 𝑁𝑂𝑃 (↑0.28, 0.24, 0.24, 0.24↓) using equations 3 and 4. Themarginalization
steps ensure we account for the uncertainty in the latent node 𝐿N1 without sampling it.
Next, Fig. 3c demonstrates the operations delayed sampling performs when we observe 𝐿L3 .

Similar to the previous step, to calculate the marginalized distribution 𝑀 (𝐿𝑁3 |𝐿L1 , 𝐿L2), we need to
marginalize out 𝐿N2 (indicated via green arrow labeled 4) and 𝐿R (indicated via green arrow labeled
3):

𝑀 (𝐿L3 |𝐿L1 , 𝐿L2) =
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 , 𝐿𝑀2 ,𝑆, 𝐿𝑀1 |𝐿L1 , 𝐿L2)

=
∑
𝐿N2

∑
𝐿R

∑
𝐿N1

𝑀 (𝐿L3 |𝐿N2)𝑀 (𝐿N2 |𝐿R)𝑀 (𝐿R |𝐿N1 , 𝐿𝑁1 , 𝐿𝑁2)𝑀 (𝐿N1 |𝐿𝑁1 , 𝐿𝑁2)
(5)

Similar to equation 3, we derive the right-most equation using the chain rule, the independence
of 𝐿L3 from its non-descendants given its parent 𝐿N2 , and 𝐿N2 from its non-descendants given its
parent 𝐿R. The right-hand side of this equation requires 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2), conditioning 𝐿𝑂 on 𝐿N1 .
Since this is not provided by the model, delayed sampling requires the value of 𝐿N1 to calculate the
conditioned distribution 𝑀 (𝐿𝑂 |𝐿𝑀1 , 𝐿𝑁1 , 𝐿𝑁2). Thus, we need to sample it (indicated via the red node).
Delayed sampling samples from internal nodes, making the likelihood calculation of a tree less
e"cient than marginalizing all the internal nodes. While delayed sampling allows marginalization,
the forward nature of the tree construction often requires delayed sampling to sample intermediate
latent variables, which causes ine"ciencies. These challenges necessitate a more e"cient approach
to marginalization.

2.4 Backward Tree Simulation

(a) (b) (c) (d)

Fig. 4. (a) Tree leaves. (b) Randomly select two nodes/leaves (children), sample a coalescence time ω𝑃0, propose
a distribution for the internal node, and observe the children based on the proposed value. (c) Repeat the same
for the next split. (d) We merge the last two nodes, update their distribution based on the root’s proposed
value, and obtain a tree. ↑0.25↓4 indicates a vector of length four where each element is 0.25.

ACM Trans. Probab. Mach. Learn., Vol. 1, No. 1, Article . Publication date: October 2025.

The likelihood of observing C at 𝐿! and 𝐿"
given Δ𝑡# and the parent’s genetic sequence

- Internal nodes are latent (unobserved)
- We sample them during inference

Belief Propagation on Tree Inference Problem

2025-12-09 10

Propagate the messages to the root to
calculate the likelihood of observations
given the tree topology

𝐿$ 𝐿% 𝐿"𝐿!

𝑁$

𝑁%

𝑅

m!!"! m!""!

m!#""
m!$""

m""#

m"!#

Marginalize out the internal nodes:

10

Intuitively, we sum over all possible states that the
internal node can take, weighted by their probabilities.

Phylogenetic tools

MrBayes

Beast

RevBayes Efficient; however:
- Hardcoded into the model
- Restricted language

Probabilistic Programming Languages
• PPLs provide flexibility.

• However, flexibility makes it hard to implement domain-specific optimizations like pruning.
Probabilistic program

User Interaction: Annotate

with prune and pruned

and with PruneInt type.

Annotated probabilistic program

Replace annotated

constructs with

runtime equivalents

ANF trans-

formation

Inclusion of

runtime system

Compiler System

Runtime System:

Contains runtime con-

structs and functions.

Pruned probabilistic program

Figure 2: Pruning process of a probabilistic program. The user annotates the proba-
bilistic program with specific constructs to enable pruning. Then, the compiler takes the
user-annotated program and replaces the annotated constructs with appropriate runtime
functions to produce the pruned probabilistic program.

arguments in function applications, the compiler creates a mapping from each state
of the pruned variable to the applied functions since the pruned variable will not
have a sampled value. This ensures appropriate handling of marginalization.

• Runtime System: The system provides the necessary runtime constructs and func-
tions to incorporate the pruning functionality into a probabilistic model. For the
correct handling of the pruning algorithm, including the challenge of dynamically
determining dependencies at runtime, the compiler incorporates the runtime system
with the user-annotated probabilistic program.

Consider the code snippet written in Miking CorePPL (Fig. 3) that generates the
simple tree example in Fig. 1 with a naive tree inference approach, i.e., no pruning.
The example is an unrolled version of the tree inference model where each unrolling step
corresponds to Fig. 1a, Fig. 1b and Fig. 1c. We also use the same order of merging nodes as
in the toy example instead of choosing random pairs since this does not change the pruning
algorithm but allows us to illustrate each step explicitly. Note that for the experiments,
we use recursive tree inference models with random pair selection. We indicate with (...)
when the actual computation details are omitted. In a CorePPL program, the constructs
assume and observe enable sampling from a distribution and conditioning the program
with respect to an observed value, respectively. We walk through this example to illustrate
the functionality of our system.

We create a Tree type to encode the structure of the phylogenetic tree (line 1).
Further, to represent the internal tree nodes, line 2 introduces the Node constructor.

6

Probabilistic Programming Languages
• PPLs provide flexibility - users write models without worrying about inference details.

• However, flexibility makes it hard to implement domain-specific optimizations like pruning.18 Gizem, et al.

1 (...)

2 con Node:{age: Float , seq: [PruneInt], left: Tree , right: Tree} -> Tree

3 con Leaf:{age: Float , seq: [Int]} -> Tree (...)

4 recursive let cluster = lam trees. lam maxAge. lam seqLen.(...)

5 let t = assume (Exponential 10.0) in

6 let age = addf t maxAge in

7 let parentSeq = iid (lam p. prune (Categorical p)) [0.25 ,0.25 ,0.25 ,0.25] seqLen in

8 iteri (lam i:Int. lam site:PruneInt. iter (lam child.

9 let deltaT = (subf age (getAge child)) in

10 let p = ctmc (pruned site) deltaT in

11 match child with Node n then

12 let s = get n.seq i in

13 observe (pruned s) (Categorical p);

14 cancel (observe (pruned s) (Categorical [0.25 ,0.25 ,0.25 ,0.25]))

15 else match child with Leaf l in

16 let s = get l.seq i in

17 observe s (Categorical p);

18 cancel (observe s (Categorical [0.25 ,0.25 ,0.25 ,0.25]))

19) [leftChild , rightChild]) parentSeq;

20 let parent = Node {age=age , seq=parentSeq ,left=leftChild , right=rightChild} in(...)

(a)

1 (...)

2 con Node:{age: Float , seq: [PruneVar], left: Tree , right: Tree} -> Tree (...)

3 recursive let cluster = lam trees. lam maxAge. lam seqLen. (...)

4 let parentSeq = iid (lam p. initPruneVar p) [0.25 ,0.25 ,0.25 ,0.25] seqLen in

5 iteri (lam i: Int. lam site: PruneVar. iter (lam child.

6 let deltaT = (subf age (getAge child)) in

7 let p = initCatParam site (lam s. ctmc s deltaT) in

8 match child with Node n then

9 let s = get n.seq i in

10 observePrune false s p;

11 observePrune true s [0.25 ,0.25 ,0.25 ,0.25]

12 else match child with Leaf l in

13 let s = get l.seq i in

14 else observePrune false s p;

15 cancel (observe s (Categorical [0.25 ,0.25 ,0.25 ,0.25]))

16) [leftChild , rightChild]) parentSeq; (...)

(b)

Fig. 9. The figure lists the code when pruning is applied. The parts of the code that remain unchanged from
the original are omi!ed and indicated via (...), and prune-related constructs are highlighted with red boxes.
(a) Demonstrates the changes in the code snippet in Fig. 7 a"er annotating the program with prune-specific
constructs. (b) Demonstrates the transformation applied on (a) by the compiler to incorporate runtime
pruning operations, such as initPruneVar, observePrune, and initCatParam. For demonstration purposes,
we manually inserted these functions in the example because the actual compiler code is too complex to
show in the paper due to transformations such as ANF.

ACM Trans. Probab. Mach. Learn., Vol. 1, No. 1, Article . Publication date: October 2025.

Where we marginalize out internal nodes

Annotated Automatic Pruning 31

NP HCP AP NP HCP AP NP HCP AP

→20,000

→15,000

→10,000

→5,000

100 1000 10000

Lo
g(
Z)

No pruning (NP) Hard-coded pruning (HCP) Automated pruning (AP)

(a) Log normalizing constants.

NP HCP AP NP HCP AP NP HCP AP
100 1000 10000

2.02 19.3

200.71

7.18
72.24

732.83

7.39
73.96

746.71

Se
co
nd

s
(b) Execution times

Fig. 15. (a) shows the GTRmodel experiment results on the primates dataset: marginal log-likelihood estimates
(y-axis) for varying particles (x-axis), without pruning, with hard-coded pruning, and with automated pruning,
respectively. The red dashed line is the MrBayes log-likelihood estimate (b) shows elapsed real-time (seconds)
for varying particles (all standard deviations are below 0.1 and thus not shown on the graph).

NP HCP AP NP HCP AP NP HCP AP

→3,000
→5,000

→10,000

→18,000

→24,000

100 1000 10000

Lo
g(
Z)

No pruning (NP) Hard-coded pruning (HCP) Automated pruning (AP)

(a) Log normalizing constants.

NP HCP AP NP HCP AP NP HCP AP
100 1000 10000

1.96 18.9

195.08

7.09
70.15

714.66

7.36
73.57

747.83

Se
co
nd

s

(b) Execution times

Fig. 16. (a) shows the GTR model experiment results on the M336 dataset: marginal log-likelihood estimates
(y-axis) for varying particles (x-axis), without pruning, with hard-coded pruning, and with automated pruning,
respectively. The red dashed line is the MrBayes log-likelihood estimate (b) shows elapsed real-time (seconds)
for varying particles (all standard deviations are below 0.1 and thus not shown on the graph).

6 Related Work
Belief propagation is widely applied to inference problems on graphical models since it allows
e!cient computation of marginal distributions over discrete variables. However, techniques for
automating its application in PPLs have been limited.
Most domain-speci"c languages implement belief propagation for a speci"c model or are not

universal PPLs, and thus, the models that can be expressed are limited [11, 12, 18, 29, 30, 34]. For
example, Factorie is a domain-speci"c language focusing on factor graphs [29]. It implements belief
propagation automatically, yet the language lacks expressiveness since the models described are

ACM Trans. Probab. Mach. Learn., Vol. 1, No. 1, Article . Publication date: October 2025.

Results

Generalized time reversible model– Primates data

2025-12-05 14

Baseline (MrBayes)

2025-12-10 15

Thank you!

