Optimizing PPL model evaluation with graphs

and applicative functors

Viktor Palmkvist

Museum of Natural History

Introduction The Problem The Solution Conclusion

[1©) ©]0) 0]0]0]0]0]e) O

Inference in Probabilistic Programming

« Core idea: probabilistic model = probabilistic program
« Inference runs and modifies programs

Museum of Natural History 1/11

Introduction The Problem The Solutlon Conclusion
oe 00 00000C

\\\\\\\\\\\\\\\\

Markov Chain Monte Carlo (MCMC)

1. Produce a sample (s).
2. Produce another sample (s”).
3. Compare the two likelihoods.
1. If proposal is likelier, accept (i.e., s; := s").

2. Otherwise, accept with probability L(¥) (reject means s; = S;).

Observation: most models are “smooth” = “close” samples have similar likelihood.

Museum of Natural History 2/11

Problem: how do we efliciently produce a proposal that is
“close” to the previous sample?

Introduction The Problem The Solution Conclusion

[J©) 000000
Defining “Close”
 General, must handle all programs. (Definition: “close” means one assume changed)
Example:
model function example() => Real {

assume a ~ Gaussian(0.0, 1.0); } Unchaneed
nchange

observe expensive(a) ~ Gaussian(0.0, 1.0);

b ~ Gaussian(0.0, 1.0);

1
2
3
4
5 observe expensive(b) ~ Gaussian(0.0, 1.0);
6 assume c ~ Gaussian(0.0, 1.0): }‘Unduuged
7 observe expensive(c) ~ Gaussian(0.0, 1.0);

8

9

return a + b + c;

}

Museum of Natural History 3/11

Introduction The Problem The Solution Conclusion
00 oe 000000 O

Data Dependencies

expensive

expensive

expensive

7
JEIE
Lo

Museum of Natural History 4/ 11

It’s an applicative functor!

Introduction The Problem The Solution Conclusion
00 00 [Yelelelele O

A Probabilistic Applicative Functor

let weight : Pval Float -> () = ...

expensive —><:> 1 type PVal a
a Y 2 let pure : a -> Pval a =
expensive _><:> N 3 let map : (a -> b) -> Pval a -> PVal b =
@/' A | 4 let apply : Pval (a -> b) -> Pval a -> PVal b =
5
expensive _’D ; > 6 let assume : PVal (Dist a) -> PVal a = ...
O 7

Museum of Natural History 5/11

Introduction The Problem The Solution Conclusion
00 00 000000 O

Generating and Optimizing a Graph

logObs G . expensive —»D

G —»@)4: lam x. addf . addf x 1 map f (pure a) =
l 2 pure (f a)
3 apply (pure f) a =
4 map f a
logObs G . expensive ————————><::> T 5 map f (map g a) =
G-——><E£>”’///' 6 map (f . g) a
7 map f (apply a b) =
apply (map (lam a. f . a))
8
a) b
logObs G . expensive
o o -O ,

Museum of Natural History 6/11

Introduction The Problem The Solution Conclusion
00 00 00000 o

Graphical Models

expensive

« This looks like a graphical model
v » ...with deterministic nodes

» ...and observations as hexagons
4 1 « What about universality?

expensive

JBIE

expensive

@/')

Museum of Natural History 7/ 11

Introduction The Problem The Solution Conclusion
©]@) ©]@) elole] lee; O
TreePPL is a Universal Probabilistic Programming Language

» Statically unbounded number of random variables
« How do we express this?

1 model geometric(p: Real) => Int {
2 assume ¢ ~ Bernoulli(p);

3 if ¢ {

4 return 1 + geometric(p);

5 }

6 return 1;

7}

- Probabilistically guarded recursion
« Problem: this cannot be expressed with a (finite) applicative functor

Museum of Natural History 8/ 11

Introduction The Problem
00 00

Solution: Monad

o Intuition:
» apply can run things “in parallel”.

a ->
a ->
a ->

a ->

1 type PVal a

2 let pure

3 let map : (a -> b) -> PVal

4 let apply : PvVal (a -> b) -> PVal

5 let bind : (a -> PVal b) -> PVal

6

7 let assume : PVal (Dist a) -> PVal a = ...
8 let weight : PVal Float -> () = ...

. CCe »
» bind must run things “in sequence”.

Museum of Natural History

Pval a
Pval b
Pval b
Pval b

The Solution
000080

Conclusion

O

9/11

Introduction The Problem The Solution Conclusion
00 00 00000e o

Manual Geometric Distribution as a Graph

B 4,@_,<>_, 1 model geometric(p: Real) => Int {
2 assume ¢ ~ Bernoulli(p);
3 if ¢ {

B 4’@—’<P—' +1 —> 4 return 1 + geometric(p);
5 1}

B +1 —» 6 return 1;
7}

1H—>

e bind builds and discards sub-graphs as

needed

« This can be expensive

Museum of Natural History 10/ 11

Introduction The Problem Th

e Solution Conclusion
0000

olelelelele) o

Conclusion

Not mentioned here and future work

 Implementation strategies (e.g., mutability or not)
o Integrating pruning, delayed sampling, etc.

Take-aways

- Applicative functor gives us speed
» ...by modelling data-flow and avoiding recomputation
« Monad gives us expressivity
> ...by nesting graphs
« Together, they generalize graphical models to handle universality

Thank you!

Museum of Natural History 11/11

	Introduction
	Inference in Probabilistic Programming
	Markov Chain Monte Carlo (MCMC)

	The Problem
	Defining "Close"
	Data Dependencies

	The Solution
	A Probabilistic Applicative Functor
	Generating and Optimizing a Graph
	Graphical Models
	TreePPL is a Universal Probabilistic Programming Language
	Solution: Monad
	Manual Geometric Distribution as a Graph

	Conclusion
	Conclusion
	Not mentioned here and future work
	Take-aways

