
Optimizing PPL model evaluation with graphs
and applicative functors

Viktor Palmkvist

Museum of Natural History



Introduction
●○

The Problem
○○

The Solution
○○○○○○

Conclusion
○

Inference in Probabilistic Programming

• Core idea: probabilistic model = probabilistic program

• Inference runs and modifies programs
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Markov Chain Monte Carlo (MCMC)

1. Produce a sample (𝑠0).

2. Produce another sample (𝑠′).
3. Compare the two likelihoods.

1. If proposal is likelier, accept (i.e., 𝑠1 ≔ 𝑠′).
2. Otherwise, accept with probability 

𝐿(𝑠′)
𝐿(𝑠0)

 (reject means 𝑠1 ≔ 𝑠0).

Observation: most models are “smooth” ⇒ “close” samples have similar likelihood.
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Problem: how do we efficiently produce a proposal that is 

“close” to the previous sample?
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Defining “Close”

• General, must handle all programs. (Definition: “close” means one assume changed)

Example:

1 model function example() => Real { tppl

2   assume a ~ Gaussian(0.0, 1.0);
} Unchanged

3   observe expensive(a) ~ Gaussian(0.0, 1.0);

4   assume  b ~ Gaussian(0.0, 1.0);

5   observe expensive(b) ~ Gaussian(0.0, 1.0);

6   assume c ~ Gaussian(0.0, 1.0);
} Unchanged

7   observe expensive(c) ~ Gaussian(0.0, 1.0);

8   return a + b + c;

9 }
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Data Dependencies

a

expensive  

b

expensive  

c

expensive  

+

+
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It’s an applicative functor!
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A Probabilistic Applicative Functor

a

expensive  

b

expensive  

c

expensive  

+

+

1 type PVal a mcore

2 let pure  :                       a -> PVal a = ...

3 let map   :      (a -> b) -> PVal a -> PVal b = ...

4 let apply : PVal (a -> b) -> PVal a -> PVal b = ...

5

6 let assume : PVal (Dist a) -> PVal a = ...

7 let weight : PVal Float -> () = ...
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Generating and Optimizing a Graph

G a

logObs G . expensive  

G b

logObs G . expensive  

G c

logObs G . expensive  

lam x. addf . addf x

 

 

1 map f (pure a) =

2   pure (f a)

3 apply (pure f) a =

4   map f a

5 map f (map g a) =

6   map (f . g) a

7 map f (apply a b) =

8
  apply (map (lam a. f . a)) 

a) b
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Graphical Models

a

expensive  

b

expensive  

c

expensive  

+

+

• This looks like a graphical model

‣ …with deterministic nodes

‣ …and observations as hexagons

• What about universality?
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TreePPL is a Universal Probabilistic Programming Language

• Statically unbounded number of random variables

• How do we express this?

1 model geometric(p: Real) => Int { tppl

2   assume c ~ Bernoulli(p);

3   if c {

4     return 1 + geometric(p);

5   }

6   return 1;

7 }

• Probabilistically guarded recursion

• Problem: this cannot be expressed with a (finite) applicative functor
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Solution: Monad

1 type PVal a mcore

2 let pure  :                            a -> PVal a = ...

3 let map   :      (a ->      b) -> PVal a -> PVal b = ...

4 let apply : PVal (a ->      b) -> PVal a -> PVal b = ...

5 let bind  :      (a -> PVal b) -> PVal a -> PVal b = ...

6

7 let assume : PVal (Dist a) -> PVal a = ...

8 let weight : PVal Float -> () = ...

• Intuition:

‣ apply can run things “in parallel”.

‣ bind must run things “in sequence”.
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Manual Geometric Distribution as a Graph

B c  

B c  +1

B c  +1

1

1 model geometric(p: Real) => Int { tppl

2   assume c ~ Bernoulli(p);

3   if c {

4     return 1 + geometric(p);

5   }

6   return 1;

7 }

• bind builds and discards sub-graphs as 

needed

• This can be expensive
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Not mentioned here and future work

• Implementation strategies (e.g., mutability or not)

• Integrating pruning, delayed sampling, etc.

Take-aways

• Applicative functor gives us speed

‣ …by modelling data-flow and avoiding recomputation

• Monad gives us expressivity

‣ …by nesting graphs

• Together, they generalize graphical models to handle universality

Thank you!
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