
Optimizing PPL model evaluation with graphs
and applicative functors

Viktor Palmkvist

Museum of Natural History

Introduction
●○

The Problem
○○

The Solution
○○○○○○

Conclusion
○

Inference in Probabilistic Programming

• Core idea: probabilistic model = probabilistic program

• Inference runs and modifies programs

Museum of Natural History 1 / 11

Introduction
○●

The Problem
○○

The Solution
○○○○○○

Conclusion
○

Markov Chain Monte Carlo (MCMC)

1. Produce a sample (𝑠0).

2. Produce another sample (𝑠′).
3. Compare the two likelihoods.

1. If proposal is likelier, accept (i.e., 𝑠1 ≔ 𝑠′).
2. Otherwise, accept with probability

𝐿(𝑠′)
𝐿(𝑠0)

 (reject means 𝑠1 ≔ 𝑠0).

Observation: most models are “smooth” ⇒ “close” samples have similar likelihood.

Museum of Natural History 2 / 11

Problem: how do we efficiently produce a proposal that is

“close” to the previous sample?

Introduction
○○

The Problem
●○

The Solution
○○○○○○

Conclusion
○

Defining “Close”

• General, must handle all programs. (Definition: “close” means one assume changed)

Example:

1 model function example() => Real { tppl

2 assume a ~ Gaussian(0.0, 1.0);
} Unchanged

3 observe expensive(a) ~ Gaussian(0.0, 1.0);

4 assume b ~ Gaussian(0.0, 1.0);

5 observe expensive(b) ~ Gaussian(0.0, 1.0);

6 assume c ~ Gaussian(0.0, 1.0);
} Unchanged

7 observe expensive(c) ~ Gaussian(0.0, 1.0);

8 return a + b + c;

9 }

Museum of Natural History 3 / 11

Introduction
○○

The Problem
○●

The Solution
○○○○○○

Conclusion
○

Data Dependencies

a

expensive

b

expensive

c

expensive

+

+

Museum of Natural History 4 / 11

It’s an applicative functor!

Introduction
○○

The Problem
○○

The Solution
●○○○○○

Conclusion
○

A Probabilistic Applicative Functor

a

expensive

b

expensive

c

expensive

+

+

1 type PVal a mcore

2 let pure : a -> PVal a = ...

3 let map : (a -> b) -> PVal a -> PVal b = ...

4 let apply : PVal (a -> b) -> PVal a -> PVal b = ...

5

6 let assume : PVal (Dist a) -> PVal a = ...

7 let weight : PVal Float -> () = ...

Museum of Natural History 5 / 11

Introduction
○○

The Problem
○○

The Solution
○●○○○○

Conclusion
○

Generating and Optimizing a Graph

G a

logObs G . expensive

G b

logObs G . expensive

G c

logObs G . expensive

lam x. addf . addf x

1 map f (pure a) =

2 pure (f a)

3 apply (pure f) a =

4 map f a

5 map f (map g a) =

6 map (f . g) a

7 map f (apply a b) =

8
 apply (map (lam a. f . a))

a) b

Museum of Natural History 6 / 11

Introduction
○○

The Problem
○○

The Solution
○○●○○○

Conclusion
○

Graphical Models

a

expensive

b

expensive

c

expensive

+

+

• This looks like a graphical model

‣ …with deterministic nodes

‣ …and observations as hexagons

• What about universality?

Museum of Natural History 7 / 11

Introduction
○○

The Problem
○○

The Solution
○○○●○○

Conclusion
○

TreePPL is a Universal Probabilistic Programming Language

• Statically unbounded number of random variables

• How do we express this?

1 model geometric(p: Real) => Int { tppl

2 assume c ~ Bernoulli(p);

3 if c {

4 return 1 + geometric(p);

5 }

6 return 1;

7 }

• Probabilistically guarded recursion

• Problem: this cannot be expressed with a (finite) applicative functor

Museum of Natural History 8 / 11

Introduction
○○

The Problem
○○

The Solution
○○○○●○

Conclusion
○

Solution: Monad

1 type PVal a mcore

2 let pure : a -> PVal a = ...

3 let map : (a -> b) -> PVal a -> PVal b = ...

4 let apply : PVal (a -> b) -> PVal a -> PVal b = ...

5 let bind : (a -> PVal b) -> PVal a -> PVal b = ...

6

7 let assume : PVal (Dist a) -> PVal a = ...

8 let weight : PVal Float -> () = ...

• Intuition:

‣ apply can run things “in parallel”.

‣ bind must run things “in sequence”.

Museum of Natural History 9 / 11

Introduction
○○

The Problem
○○

The Solution
○○○○○●

Conclusion
○

Manual Geometric Distribution as a Graph

B c

B c +1

B c +1

1

1 model geometric(p: Real) => Int { tppl

2 assume c ~ Bernoulli(p);

3 if c {

4 return 1 + geometric(p);

5 }

6 return 1;

7 }

• bind builds and discards sub-graphs as

needed

• This can be expensive

Museum of Natural History 10 / 11

Introduction
○○

The Problem
○○

The Solution
○○○○○○

Conclusion
●

Conclusion

Not mentioned here and future work

• Implementation strategies (e.g., mutability or not)

• Integrating pruning, delayed sampling, etc.

Take-aways

• Applicative functor gives us speed

‣ …by modelling data-flow and avoiding recomputation

• Monad gives us expressivity

‣ …by nesting graphs

• Together, they generalize graphical models to handle universality

Thank you!

Museum of Natural History 11 / 11

	Introduction
	Inference in Probabilistic Programming
	Markov Chain Monte Carlo (MCMC)

	The Problem
	Defining "Close"
	Data Dependencies

	The Solution
	A Probabilistic Applicative Functor
	Generating and Optimizing a Graph
	Graphical Models
	TreePPL is a Universal Probabilistic Programming Language
	Solution: Monad
	Manual Geometric Distribution as a Graph

	Conclusion
	Conclusion
	Not mentioned here and future work
	Take-aways

