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Introduction: Probabilistic Programming Languages

• Probabilistic programming languages (PPLs) provide tools to write probabilistic models and run 
statistical inference over these models.
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What is the probability of heads after 
observing 83 heads



Introduction: Probabilistic Programming Languages
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Exact Inference
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Introduction: Miking CorePPL
• Statically typed universal probabilistic programming language

• Calculate posterior distributions and the marginalized log likelihood.

.
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let a = assume (Beta 5. 5.) in
observe true (Bernoulli a)

sample

update the likelihood

𝑃 𝑎 𝐷 =
𝑃(𝐷|𝑎)𝑃(a)

𝑃(𝐷)

Asymptotically converges to true posterior
with samples and their associated likelihood

𝑃(𝐷) = ∫ 𝑃(𝐷|𝑎)𝑃(a)

Types are known and enforced at compile-timeExpressive enough to represent any probability model 

Posterior
Marginalized 
likelihood



Introduction: Problem definition
• Trade-off between approximate vs exact methods
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Approximate 
Inference

Exact 
Inference

Computational 
Efficiency

Accuracy

Dynamic 
Adaptation

Expressivess

𝑃 𝜃 𝐷 =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)

𝑃(𝐷) = ∫ 𝑃(𝐷|𝜃)𝑃(𝜃)



Introduction: Problem definition
• By utilizing exact inference techniques, we can improve the efficiency of approximate methods.

6

𝑃(𝜃)~𝐵𝑒𝑡𝑎(5,5)

𝑃(𝐷|𝜃)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃)

𝑃(𝜃|𝐷)  ~ ?

𝑃 𝜃|𝐷 ~𝐵𝑒𝑡𝑎 88,22

1,000,000 particles

1 particle

Semantically equivalent models
Both models converge to the same posterior 
with different execution times
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Approaches

Compile-time approaches Runtime approaches

• Topology of the model
• Conjugate prior relations between random variables

a Beta(5., 5.)

Bernoulli(a)

Delayed sampling by Murray et al. (2018): An approach utilizing 

conjugate prior relations at runtime

Belief propagation by Pearl (1986) gives exact 

solution for models forming tree structures.

When

What

How

2024-12-16 7



Statically Delayed Sampling Algorithm 
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Programmatic 
Bayesian Network

𝑃 𝑏 = න

𝑎

𝑃(𝑏|𝑎)𝑃(a) 𝑑𝑎

Marginalize

𝑃 𝑎 𝑏 =
𝑃(𝑏|𝑎)𝑃(a)

𝑃(𝑏)

Condition



Programmatic Bayesian Network
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Programmatic Bayesian Network

r1 r2

i



Reconstruct
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• Topologically sort the graph and then reconstruct each node



Results
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Latent Dirichlet allocationBayesian linear regression



Automating the Forward Pass of 
Belief Propagation

• Tree inference is a fundamental problem in 
evolutionary biology

• Given the current species, what is the most 
likelihood evolutionary tree or distribution 
of trees?

• Can we answer this question efficiently?

Complete mitochondrial genome of Papilio elwesi and its phylogenetic analyses with other 
swallowtail butterflies (Lepidoptera, Papilionidae) - Scientific Figure on ResearchGate. Available 
from: https://www.researchgate.net/figure/Phylogenetic-tree-using-Bayesian-inference-BI-and-
maximum-likelihood-ML-analysis_fig1_359347159 [accessed 2 Dec 2024]
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Common ancestor

The purpose is to calculate 
the likelihood of this tree
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Complete mitochondrial genome of Papilio elwesi and its phylogenetic analyses 
with other swallowtail butterflies (Lepidoptera, Papilionidae) - Scientific Figure 
on ResearchGate. Available from: 
https://www.researchgate.net/figure/Phylogenetic-tree-using-Bayesian-
inference-BI-and-maximum-likelihood-ML-analysis_fig1_359347159 [accessed 2 
Dec 2024]
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• The important information is the topology of the tree not specific 
information about internal nodes such as their genetic code 

• Can we summarize this information:
For all the possible values internal nodes can take, what is the 
likelihood of this tree?
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Belief Propagation on Tree Inference Problem
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𝐿1 𝐿2 𝐿4𝐿3

𝑁1

𝑁2

𝑅

Propagate the messages to the root to 
calculate the likelihood of observations given 
the tree topology

mL1N1 mL2N1

mL4N2
mL3N2

mN2R

mN1R

Marginalize out the internal nodes
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Results

Generalized time reversible model– Primates data 
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The number of lines that need to be changed for 
Automated pruning: 18

Hard-coded pruning: 107

Without pruning, GTR model is encoded in 110 lines
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Conclusion
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