
2023-11-23 1

Programming with Context-Sensitive Holes  
using Dependency-Aware Tuning

Miking Workshop 2023

Linnea Stjerna (lstjerna@kth.se)

David Broman

2023-11-23

All photos in the presentation are free to use under the Unsplash licence.

Financially supported by the
Swedish Foundation for

Strategic Research.

mailto:lstjerna@kth.se
https://unsplash.com/license

Motivation

2

• Design choices affect performance

• Hard and time-consuming to tune manually

• How can we automate program tuning?

Data
structures

Algorithm

choices

Parameter

values

Research Problems

3

• Programming abstractions for automatic tuning

• Exponential search space

• Re-using tuning results (not in this talk)

Program Holes

4

• Program hole = unknown variable with a domain (set of possible values)

• Encode implementation choices that are 
- semantically equivalent (e.g., choice of algorithm) 
- but with different trade-offs in performance

• Simple example: choosing between sorting algorithms.

let sort = lam seq.
 let threshold = hole (
 IntRange {default = 10, min = 0, max = 10000}) in
 if leqi (length seq) threshold then insertionSort seq
 else mergeSort seq

let intHole = hole (IntRange {default = 1, min = 1, max = 10}) in
let boolHole = hole (Boolean {default = true}) in

Another Example

5

• Running the map function sequentially or in parallel:

• Performance of map likely to depend on 
- nature of function f 
- length of the sequence

 We need to take the context (call site) into account⇒

let map = lam f. lam seq.
 let par = hole (Boolean {default = false}) in
 if par then
 parallelMap f s
 else
 sequentialMap f s

Context-Sensitive Holes

6

• Map function with context-sensitivity:

• Tune par for each context (one decision per call site)

• Programmer does not need to know about the hole (hidden in a library)

let map = lam f. lam seq.
 let par = hole (Boolean {default = false, depth = 1}) in
 if par then
 parallelMap f s
 else
 sequentialMap f s

Consider the call path

one step backward

7

• Each program hole might affect every other program hole

 Search space consists of all combinations of hole values

• 273 binary choices #atoms in the universe!1

• Our solution to reduce the search space:  
- Static analysis finds dependent holes automatically 
- Instrumentation for fine-grained time measurements 
- Optional user annotations for independence

⇒

>

Exponential Search Space

1https://www.liverpoolmuseums.org.uk/stories/which-greater-number-of-atoms-universe-or-number-of-chess-moves

let knnClassify = lam k: Int. lam data: [([Int],Label)]. lam query: [Int].
 -- Step 1: compute the distance to each point in the data set
 let dists: [(Int,Label)] = map (lam d: ([Int],Label).
 (euclideanDistance query d.0, d.1)
) data
 in
 -- Step 2: sort the distances in ascending order
 let sortedDists: [(Int,Label)] = sort (
 lam d1: (Int,Label). lam d2: (Int,Label). subi d1.0 d2.0
) dists
 in
 -- Step 3: return the most common label among the k nearest neighbors
 let kNearest: [(Int,Label)] = subsequence sortedDists 0 k in
 mostCommonLabel kNearest

8

Sequence representation ()hseq

Sequential/parallel map ()hmap

Sort function ()hsort

Search space size (without reduction): |hseq | ⋅ |hmap | ⋅ |hsort |

Example: Dependency Analysis

k-Nearest Neighbor (k-NN) Classification

Observations:

1. Sequence representation affects map and sort

2. map and sorting are independent

Observations:

1. Sequence representation affects map and sort

2. map and sorting are independent

9

Example: Dependency Analysis

k-Nearest Neighbor (k-NN) Classification

� �

����

���	

��
��

�

��

��

Holes Measuring points

• Dependency graph: Edges connect holes to measuring points = pieces of instrumented code

• If , then the reduction is from to |hseq | = |hmap | = |hsort | = n n3 n2

Hole Measuring

Before
After

|hseq | ⋅ |hmap | ⋅ |hsort | max(|hseq | ⋅ |hmap | , |hseq | ⋅ |hsort |)

Related Work

10

Generic autotuners

- Work across problem domains

Machine learning for
compiler optimization

- Low-level choices

- E.g. phase selection and

ordering

Domain-specific automatic
tuners (autotuners)

- Powerful for their specific

problems

- Do not generalize

Our key contributions:

- Context-sensitivity

- Static dependency analysis

Summary

11

• Program holes express design decisions directly in the source code.

• Tuning is context-sensitive.

• Static data-flow analysis reduces the search space size.

For more details, please see our preprint!

Linnea Stjerna and David Broman. 2022.

Programming with Context-Sensitive Holes using
Dependency-Aware Tuning.

https://doi.org/10.48550/ARXIV.2209.01000

