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Cyber-Physical Systems

Programming Languages 
and Compilers

�<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)
Patterns p ::= sym :⌧ | x@x | lift x :⌧

�<?>L (extends �<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �<?> to an intermediate language �<?>L that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �<?> and �<?>L are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �<?>LC (Section 3.4). We present
an operational semantics for �<?>LC and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �<?>LC , from which we obtain type safety for �<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, et, ef ) eliminates
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The Vision of Miking David Broman. A Vision of Miking: Interactive Programmatic Modeling, Sound 
Language Composition, and Self-Learning Compilation. In Proceedings of the 12th 
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Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Preprocessing and template 
metaprogramming 
• C++ Templates (Veldhuizen, 1995) 
• Template Haskell (Sheard & Peyton 

Jones, 2002) 
• Stratego/XP (Bravenboer et al., 2008)

Compiler construction 
• Standard Lex, Yacc (external DSL) 
• JastAdd (Ekman & Hedin, 2007)

Embedded DSLs 
• Haskell DSELs, e.g., Fran (Ellito & 

Hudak, 1997), Lava (Bjesse et al. 1998, 
FHM (Nilsson et al., 2003) 

• Scala, e.g. Lightweight modular staging 
(Rompf and Odersky, 2010) 

• Shallow embedding and PE (Leißa et 
al., 2015) 

Language Workbenches and Languages 
for creating languages 
• SugarJ, MPS, Spoofax, RASCAL, 

MetaEdit+, Enso ̄ , Racket etc.

Miking

Related Work



Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

MC O

MC MC O

MC

MC O

O O x86

x86

MC O

x86

O x86

x86

MC x86

x86

MC

x86MC

x86
x86

O x86

x86

MC

O

x86

A B
C

New A
B

Interpreter written in 
B, interpreting 
language A

A
Machine 
executing 
language A

Core Compiler

Compiling language 
A to B, written in 
language C 

Generated
Existing

MC = MCore
O = OCaml

Miking  
Compiler

Bootstrap 
interpreter

Bootstrapping the Miking Compiler



Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

MExpr 
Program

MCoreRagnar

DSLs

Overview of the Toolchain

Compiler Target 
 (OCaml, JavaScript or CUDA)

Compiles to

Language 
Fragments

MLang 
Program

Translates to

MExpr is defined by 
(using  composition)

Reduces to
DSL Program

Parses to  
(using resolvable ambiguity)

DSL IR  
Code



Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Ragnar

MExpr - the Miking IR

Features 
• Functional Intermediate language 
• Polymorphic Type System - statically typed with 

type inference 
• Intermediate representation - concrete syntax 

very close to abstract syntax 
• Small but complete. Eager, includes references, 

arrays, sequences, algebraic data types, pattern 
matching, etc.



Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

MExpr 
Program

MCoreRagnar

DSLs

Overview of the Toolchain

Compiler Target 
 (OCaml, JavaScript or CUDA)

Compiles to

Language 
Fragments

MLang 
Program

Translates to

MExpr is defined by 
(using  composition)

Reduces to
DSL Program

Parses to  
(using resolvable ambiguity)

DSL IR  
Code



David Broman

MLang: Language Fragments and Composition
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Statically Resolvable Ambiguity

Statically Resolvable Ambiguity 58:3

A program is resolvable if all its ASTs can be written unambiguously:

De�nition 2.2. A program ? is resolvable if 8C 2 parse(?). 9? 0. parse(? 0) = {C}.

Correspondingly, a program is unambiguous if it is not ambiguous, and unresolvable if it is not
resolvable.

We approach the motivation from three angles: pre-existing languages, composing languages or
combining libraries, and creating new domain-speci�c languages.

2.1.1 Pre-existing Languages. Consider the operators == (equality) and & (bitwise and). These
operators are are commonly available with the same syntax and semantics in many programming
languages. This means that, e.g., the expression 1 & 2 == 3 is valid in a large number of
programming languages. However, despite knowing the semantics of every component of the
expression, a reader can be forgiven for being unsure of what it should evaluate to, since it still
di�ers between languages! For example, these are the informal evaluation steps for the same
expression in C and Python:

C 1 & 3 == 1 ! 1 & (3 == 1) ! 1 & 0 ! 0

Python 1 & 3 == 1 ! (1 & 3) == 1 ! 1 == 1 ! True

Note that the di�erence is not due to di�erent semantics of the operators involved between the
languages, rather it is due to di�ering precedence. Both languages make a choice that can surprise
programmers; both Clang and GCC have a �ag -Wparentheses to warn about the surprising behav-
ior, and Python does not follow C’s precedence conventions, even though most other programming
languages do.
Resolvable ambiguity presents a third choice: leave the precedence unde�ned and produce

an ambiguity error instead. The programmer can resolve the error by adding parentheses (with
assistance from the compiler, see the error message below), which as an added bene�t means that a
later reader of the code also cannot be surprised by the behavior. Note that this approach is more
principled than the approach behind the -Wparentheses �ag mentioned above.

1 Error: The program is ambiguous:

2

3 1 & ( 3 == 1 )

4 ( 1 & 3 ) == 1

However, this does not mean that the programmer has to explicitly group every part of every
expression. For example, 0 & 1 & 2 and 0 + 1 == 2 can both still be unambigous (through left-
associativity and precedence, respectively); ambiguity only arises when the language designer has
chosen to leave the relative precedence of two operators unde�ned.

This last point somewhat subtle; precedence tends to be a total order, which leaves no room for
ambiguity, resolvable or not. De�ning the meaning of precedence in the absence of a total order
is non-obvious but necessary to combine the convenience of precedence where it is commonly
known (e.g., arithmetic, comparators, etc.) with compiler-assisted explicitness in less clear cases.
As a non-operator related example, certain language constructs do not have an explicit end

marker, which means that nested uses are ambiguous in a naive grammar. “Dangling else” is a
commonly known example of this; nesting two ifs with only one else makes it non-obvious to
which if the else belongs. However, in our experience nested matches in OCaml cause problems
more often than nested ifs, especially for beginners, thus we focus on this case instead.
Consider the following example (slightly modi�ed from [Palmkvist and Broman 2019]), where

the intent is that the last case should belong to the outer match, but OCaml’s chosen interpretation
groups it with the inner match instead:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.
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ambiguity in grammars [Danielsson and Norell 2011; de Souza Amorim and Visser 2020; Palmkvist
and Broman 2019; The dafny-lang community 2022, Section 7.1]. However, an ambiguous grammar
is only useful if all programs allowed by the grammar can be resolved. Speci�cally, it would be
directly dissatisfactory if a user can write a program that is parsed and reported by the compiler
to be ambiguous, but is impossible to rewrite in an unambiguous manner. State-of-the-art solu-
tions [Palmkvist, Castegren, et al. 2021] can perform comprehensive property-based testing, which
gives fairly good con�dence that the grammar is resolvably ambiguous, but there are no static
guarantees.
It is currently unknown whether the general decision problem of resolvable ambiguity for

context-free grammars is decidable, but it is likely not the case. As a consequence, it is an open
problem to design a solution that (i) is expressive enough to accept standard programming language
syntax, (ii) gives formal guarantees for the absence of unresolvable ambiguities statically, and (iii)
makes it possible to implement checkers and parsers that are e�cient and useful in practice. We say
that a solution to this problem handles statically resolvable ambiguity in a correct and e�cient way.
In this paper, we solve this open problem by designing a modular approach where the new

concept of a grouper is used together with a parser. The solution is extensible and expressive
(any standard parser can be used with the grouper), e�cient (we show how essential parts of the
standard OCaml parser can be e�ciently replaced with our approach), and correct (we formalize
the semantics in Coq and prove that all programs are resolvable given certain mild assumptions).
Key ideas of our solution include the concepts of splittable productions and grouping of operator
sequences, where the standard parser produces a sequence of operators that are later grouped into
an abstract syntax tree.

Concretely, we make the following contributions:
• We develop and formalize the novel approach of implicit and explicit grouping that allows
an end-user to resolve ambiguities. The grouper can be embedded in a traditional parser in a
straightforward manner (Section 3).

• We provide a mechanized proof of correctness in Coq, stating that only resolvable ambiguities
are possible, given certain mild assumptions about splittable productions (Section 4).

• We implement our approach as a library and evaluate it empirically using two case studies.
Firstly, we show how the standard OCaml compiler’s parser can be replaced with our ap-
proach, yielding a complete parser with resolvable ambiguities that is both e�cient and usable
in practice. Secondly, we develop a new parser generator for encoding ambiguous gram-
mars, where non-trivial domain-speci�c languages (DSLs) can be de�ned using ambiguous
grammars with the static resolvable ambiguity property (Sections 5 and 6).

2 MOTIVATING RESOLVABLE AMBIGUITY AND OVERVIEW
Splitting ambiguities into two categories, resolvable and unresolvable, is not common praxis, thus
we begin this section by motivating resolvable ambiguity through examples. Next, we explain why
a static guarantee of resolvability is a strongly desirable property. Finally, we give an overview of
our approach and how it integrates into a conventional parsing approach.

2.1 Motivating Resolvable Ambiguity
Following our previous work [Palmkvist, Castegren, et al. 2021] we consider parsing to be a function
parse from programs to sets of ASTs. In this view, ambiguity is de�ned in terms of the size of the
returned set:

De�nition 2.1. A program ? is ambiguous if 9C1, C2 2 parse(?). C1 < C2, i.e., it can parse as at least
two distinct ASTs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.
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def model2 =  
 world -- RevoluteJoint(yhat, q0_1) --  
 Bar(1.5 * l, q0_1) --  
 RevoluteJoint(yhat, q0_1) -- Bar(l, q0_2) -- f1

Robotics and CPS
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- Thesis research project 
- Extending standard library 
- Examples and documentation 
- Fixing issues

Thanks for listening!


