
Miking Workshop, 2023

David Broman
Professor, KTH Royal Institute of Technology
Visting Professor, Stanford University
Associate Director Faculty, Digital Futures

Digital Futures Hub
Stockholm, November 23, 2023

Financially supported by the
Swedish Foundation for

Strategic Research.

Vetenskapsrådet
(VR)

Miking Contributors (Alphabetic Order)

David Broman
Elias Castegren
Gizem Çaylak
Oscar Eriksson
Mattias Grenfeldt
Lars Hummelgren
Jan Kudlicka
Daniel Lundén
Asta Olofsson

Viktor Palmkvist
Theo Puranen Åhfeldt
William Rågstad
Viktor Senderov
Linnea Stjerna
John Wikman
Anders Ågren Thuné
Joey Öhman

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Part III
Overview of the Miking Framework

Part I
Research Group

Part II
Workshop Overview

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Part I
Research Group

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Intersection of
Research Areas

Probabilistic
Machine Learning

Cyber-Physical Systems

Programming Languages
and Compilers

�<?>

Ground Types � 2 G
Symbolic Data Types D 2 D
Types ⌧ ::= � | ⌧!⌧ | ? | <⌧> | D
Variables x, y 2 X
Symbols s 2 S
Constants c 2 C
Expressions e ::= x | �x :⌧.e | e e | c | error |

⌫(⌧) | case(e, p, e, e)
Patterns p ::= sym :⌧ | x@x | lift x :⌧

�<?>L (extends �<?>)

Expressions e + = e@ e | lift e :⌧

Figure 4: Abstract syntax of �<?> and �<?>L .

To formalize the static and dynamic semantics, as well proving soundness property
of the language, we present three different intermediate languages. The language �<?>

is the source language corresponding to the essential core of Modelyze. We define a
translation from �<?> to an intermediate language �<?>L that lifts selected expressions
into symbolic expressions (Section 3.3). The reason for symbolic lifting is, as dis-
cussed in the previous chapter, to create data structures of equations that can later be
inspected and analyzed. Both �<?> and �<?>L are gradually typed languages, that is, they
mix static and dynamic typing. The dynamic aspect is made explicit through a cast
insertion translation into another intermediate language �<?>LC (Section 3.4). We present
an operational semantics for �<?>LC and prove that the translations between the inter-
mediate languages are type preserving. We prove the usual progress and preservation
lemmas for �<?>LC , from which we obtain type safety for �<?> (Section 3.5).

3.1. Syntax
The abstract syntax for �<?> is defined in Figure. 4. The meta-variables x and y range
over variables, taken from some countable set of names X. The meta-variable e ranges
over the set of expressions Expr and ⌧ ranges over the set of types Types . We use sub-
scripts to create different meta-variables, e.g., e1 and e2 are two different metavariables
that range over expressions.

The first five expressions are standard, but to review, the expression x is a free
variable and lambda abstraction �x:⌧.e binds variable x of type ⌧ in e and delays the
execution of e until the abstraction is applied to an argument. The expression e1 e2 is
an application and c 2 C is a constant. The set of constants C is the union of the set
of boolean values {true, false}, the set of integers, the set of floating-point values,
the set of strings, and the set of primitive functions. The expression error is a simple
form of exception used to signal cast and pattern match errors.

There are two new kinds of expressions in �<?>. Expression ⌫(⌧) (pronounced
“new”) creates a fresh symbol with type ⌧ . The expression case(e, p, et, ef) eliminates

12

Viktor
Palmkvist

PhD
Student

Oscar
Eriksson

PhD
Student

Lars
Hummelgren

PhD
Student

Linnea
Ingmar

PhD
Student

Gizem
Çaylak

PhD
Student

Anders Ågren
Thuné

Master’s
Student

John
Wikman

PhD
Student

David
Broman

PI

Programming and Modeling Languages Group

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Scientists

System

Model Model Model

Perform
experiments

Insights from
(Lee, 2016) and
(Cellier, 1996)

Why?
- Get insights
- Cheaper
- Too dangerous
- May not exist
- Easier

Our group:
Develop domain-specific modeling
languages and compilers

Overall Research Challenge
Combine:
- high-level of abstraction modeling with
- automatically generated efficient compilers Engineers

Why models?

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Part II
Workshop Overview

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Agenda

Miking Workshop 2023

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Agenda

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Agenda

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Agenda

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Part II
Overview of the Miking

Framework

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Objectives:
• Platform for constructing heterogeneous domain-

specific modeling languanges (DSLs)
• Polymorphic static type system (based on FreezeML).
• Bootstrapping compiler
• Target constrained real-time systems as well as offline

distributed computations
• Efficient compiler - different target platforms
• Research platform
• Open source (MIT license)

Miking (the Meta vIKING)

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Miking
Framework

Hetero-
geneous
Execution
Platforms

Residual
Program

Offline learning feedback

Online learning
feedback

Partial
Evaluation

Interactive
Views

Programmatic
Model

Input Data

Interactive Programmatic
Modeling (Part I)

Sound Language
Composition (Part II)

Efficient Compilation (Part III)

Language
Fragments

The Vision of Miking David Broman. A Vision of Miking: Interactive Programmatic Modeling, Sound
Language Composition, and Self-Learning Compilation. In Proceedings of the 12th
ACM SIGPLAN International Conference on Software Language Engineering (SLE 2019),
Athens, Greece, ACM, 2019.

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Preprocessing and template
metaprogramming
• C++ Templates (Veldhuizen, 1995)
• Template Haskell (Sheard & Peyton

Jones, 2002)
• Stratego/XP (Bravenboer et al., 2008)

Compiler construction
• Standard Lex, Yacc (external DSL)
• JastAdd (Ekman & Hedin, 2007)

Embedded DSLs
• Haskell DSELs, e.g., Fran (Ellito &

Hudak, 1997), Lava (Bjesse et al. 1998,
FHM (Nilsson et al., 2003)

• Scala, e.g. Lightweight modular staging
(Rompf and Odersky, 2010)

• Shallow embedding and PE (Leißa et
al., 2015)

Language Workbenches and Languages
for creating languages
• SugarJ, MPS, Spoofax, RASCAL,

MetaEdit+, Enso ̄ , Racket etc.

Miking

Related Work

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

MC O

MC MC O

MC

MC O

O O x86

x86

MC O

x86

O x86

x86

MC x86

x86

MC

x86MC

x86
x86

O x86

x86

MC

O

x86

A B
C

New A
B

Interpreter written in
B, interpreting
language A

A
Machine
executing
language A

Core Compiler

Compiling language
A to B, written in
language C

Generated
Existing

MC = MCore
O = OCaml

Miking
Compiler

Bootstrap
interpreter

Bootstrapping the Miking Compiler

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

MExpr
Program

MCoreRagnar

DSLs

Overview of the Toolchain

Compiler Target
 (OCaml, JavaScript or CUDA)

Compiles to

Language
Fragments

MLang
Program

Translates to

MExpr is defined by
(using composition)

Reduces to
DSL Program

Parses to
(using resolvable ambiguity)

DSL IR
Code

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Ragnar

MExpr - the Miking IR

Features
• Functional Intermediate language
• Polymorphic Type System - statically typed with

type inference
• Intermediate representation - concrete syntax

very close to abstract syntax
• Small but complete. Eager, includes references,

arrays, sequences, algebraic data types, pattern
matching, etc.

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

MExpr
Program

MCoreRagnar

DSLs

Overview of the Toolchain

Compiler Target
 (OCaml, JavaScript or CUDA)

Compiles to

Language
Fragments

MLang
Program

Translates to

MExpr is defined by
(using composition)

Reduces to
DSL Program

Parses to
(using resolvable ambiguity)

DSL IR
Code

David Broman

MLang: Language Fragments and Composition

syn: defines
extensible
constructors

use: using a language
fragment in an
expression

sem: define
extensible
functions

Composing
together language
fragments

Independent
language
fragment, using
the same syn and
sem names

Features
• Order-independent

pattern matching
composition

• Many semantic functions, e.g. ANF
transformation, CPS transformation,
lambda lifting, symbolizer, etc.

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Statically Resolvable Ambiguity

Statically Resolvable Ambiguity 58:3

A program is resolvable if all its ASTs can be written unambiguously:

De�nition 2.2. A program ? is resolvable if 8C 2 parse(?). 9? 0. parse(? 0) = {C}.

Correspondingly, a program is unambiguous if it is not ambiguous, and unresolvable if it is not
resolvable.

We approach the motivation from three angles: pre-existing languages, composing languages or
combining libraries, and creating new domain-speci�c languages.

2.1.1 Pre-existing Languages. Consider the operators == (equality) and & (bitwise and). These
operators are are commonly available with the same syntax and semantics in many programming
languages. This means that, e.g., the expression 1 & 2 == 3 is valid in a large number of
programming languages. However, despite knowing the semantics of every component of the
expression, a reader can be forgiven for being unsure of what it should evaluate to, since it still
di�ers between languages! For example, these are the informal evaluation steps for the same
expression in C and Python:

C 1 & 3 == 1 ! 1 & (3 == 1) ! 1 & 0 ! 0

Python 1 & 3 == 1 ! (1 & 3) == 1 ! 1 == 1 ! True

Note that the di�erence is not due to di�erent semantics of the operators involved between the
languages, rather it is due to di�ering precedence. Both languages make a choice that can surprise
programmers; both Clang and GCC have a �ag -Wparentheses to warn about the surprising behav-
ior, and Python does not follow C’s precedence conventions, even though most other programming
languages do.
Resolvable ambiguity presents a third choice: leave the precedence unde�ned and produce

an ambiguity error instead. The programmer can resolve the error by adding parentheses (with
assistance from the compiler, see the error message below), which as an added bene�t means that a
later reader of the code also cannot be surprised by the behavior. Note that this approach is more
principled than the approach behind the -Wparentheses �ag mentioned above.

1 Error: The program is ambiguous:

2

3 1 & (3 == 1)

4 (1 & 3) == 1

However, this does not mean that the programmer has to explicitly group every part of every
expression. For example, 0 & 1 & 2 and 0 + 1 == 2 can both still be unambigous (through left-
associativity and precedence, respectively); ambiguity only arises when the language designer has
chosen to leave the relative precedence of two operators unde�ned.

This last point somewhat subtle; precedence tends to be a total order, which leaves no room for
ambiguity, resolvable or not. De�ning the meaning of precedence in the absence of a total order
is non-obvious but necessary to combine the convenience of precedence where it is commonly
known (e.g., arithmetic, comparators, etc.) with compiler-assisted explicitness in less clear cases.
As a non-operator related example, certain language constructs do not have an explicit end

marker, which means that nested uses are ambiguous in a naive grammar. “Dangling else” is a
commonly known example of this; nesting two ifs with only one else makes it non-obvious to
which if the else belongs. However, in our experience nested matches in OCaml cause problems
more often than nested ifs, especially for beginners, thus we focus on this case instead.
Consider the following example (slightly modi�ed from [Palmkvist and Broman 2019]), where

the intent is that the last case should belong to the outer match, but OCaml’s chosen interpretation
groups it with the inner match instead:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

ParserInput
Program

AST

Unambiguous
Grammar

Traditional Approach

ParserInput
Program

Partially
Ambiguous
Grammar

Resolvable Ambiguity

AST
AST

AST

Error message
with resolutions

The Static Resolvable Ambiguity Problem:
Statically guarantee that the end user can
resolve all accepted programs.

End user -
the programmer

Resolved
Program

58:2 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

ambiguity in grammars [Danielsson and Norell 2011; de Souza Amorim and Visser 2020; Palmkvist
and Broman 2019; The dafny-lang community 2022, Section 7.1]. However, an ambiguous grammar
is only useful if all programs allowed by the grammar can be resolved. Speci�cally, it would be
directly dissatisfactory if a user can write a program that is parsed and reported by the compiler
to be ambiguous, but is impossible to rewrite in an unambiguous manner. State-of-the-art solu-
tions [Palmkvist, Castegren, et al. 2021] can perform comprehensive property-based testing, which
gives fairly good con�dence that the grammar is resolvably ambiguous, but there are no static
guarantees.
It is currently unknown whether the general decision problem of resolvable ambiguity for

context-free grammars is decidable, but it is likely not the case. As a consequence, it is an open
problem to design a solution that (i) is expressive enough to accept standard programming language
syntax, (ii) gives formal guarantees for the absence of unresolvable ambiguities statically, and (iii)
makes it possible to implement checkers and parsers that are e�cient and useful in practice. We say
that a solution to this problem handles statically resolvable ambiguity in a correct and e�cient way.
In this paper, we solve this open problem by designing a modular approach where the new

concept of a grouper is used together with a parser. The solution is extensible and expressive
(any standard parser can be used with the grouper), e�cient (we show how essential parts of the
standard OCaml parser can be e�ciently replaced with our approach), and correct (we formalize
the semantics in Coq and prove that all programs are resolvable given certain mild assumptions).
Key ideas of our solution include the concepts of splittable productions and grouping of operator
sequences, where the standard parser produces a sequence of operators that are later grouped into
an abstract syntax tree.

Concretely, we make the following contributions:
• We develop and formalize the novel approach of implicit and explicit grouping that allows
an end-user to resolve ambiguities. The grouper can be embedded in a traditional parser in a
straightforward manner (Section 3).

• We provide a mechanized proof of correctness in Coq, stating that only resolvable ambiguities
are possible, given certain mild assumptions about splittable productions (Section 4).

• We implement our approach as a library and evaluate it empirically using two case studies.
Firstly, we show how the standard OCaml compiler’s parser can be replaced with our ap-
proach, yielding a complete parser with resolvable ambiguities that is both e�cient and usable
in practice. Secondly, we develop a new parser generator for encoding ambiguous gram-
mars, where non-trivial domain-speci�c languages (DSLs) can be de�ned using ambiguous
grammars with the static resolvable ambiguity property (Sections 5 and 6).

2 MOTIVATING RESOLVABLE AMBIGUITY AND OVERVIEW
Splitting ambiguities into two categories, resolvable and unresolvable, is not common praxis, thus
we begin this section by motivating resolvable ambiguity through examples. Next, we explain why
a static guarantee of resolvability is a strongly desirable property. Finally, we give an overview of
our approach and how it integrates into a conventional parsing approach.

2.1 Motivating Resolvable Ambiguity
Following our previous work [Palmkvist, Castegren, et al. 2021] we consider parsing to be a function
parse from programs to sets of ASTs. In this view, ambiguity is de�ned in terms of the size of the
returned set:

De�nition 2.1. A program ? is ambiguous if 9C1, C2 2 parse(?). C1 < C2, i.e., it can parse as at least
two distinct ASTs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:2 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

ambiguity in grammars [Danielsson and Norell 2011; de Souza Amorim and Visser 2020; Palmkvist
and Broman 2019; The dafny-lang community 2022, Section 7.1]. However, an ambiguous grammar
is only useful if all programs allowed by the grammar can be resolved. Speci�cally, it would be
directly dissatisfactory if a user can write a program that is parsed and reported by the compiler
to be ambiguous, but is impossible to rewrite in an unambiguous manner. State-of-the-art solu-
tions [Palmkvist, Castegren, et al. 2021] can perform comprehensive property-based testing, which
gives fairly good con�dence that the grammar is resolvably ambiguous, but there are no static
guarantees.
It is currently unknown whether the general decision problem of resolvable ambiguity for

context-free grammars is decidable, but it is likely not the case. As a consequence, it is an open
problem to design a solution that (i) is expressive enough to accept standard programming language
syntax, (ii) gives formal guarantees for the absence of unresolvable ambiguities statically, and (iii)
makes it possible to implement checkers and parsers that are e�cient and useful in practice. We say
that a solution to this problem handles statically resolvable ambiguity in a correct and e�cient way.
In this paper, we solve this open problem by designing a modular approach where the new

concept of a grouper is used together with a parser. The solution is extensible and expressive
(any standard parser can be used with the grouper), e�cient (we show how essential parts of the
standard OCaml parser can be e�ciently replaced with our approach), and correct (we formalize
the semantics in Coq and prove that all programs are resolvable given certain mild assumptions).
Key ideas of our solution include the concepts of splittable productions and grouping of operator
sequences, where the standard parser produces a sequence of operators that are later grouped into
an abstract syntax tree.

Concretely, we make the following contributions:
• We develop and formalize the novel approach of implicit and explicit grouping that allows
an end-user to resolve ambiguities. The grouper can be embedded in a traditional parser in a
straightforward manner (Section 3).

• We provide a mechanized proof of correctness in Coq, stating that only resolvable ambiguities
are possible, given certain mild assumptions about splittable productions (Section 4).

• We implement our approach as a library and evaluate it empirically using two case studies.
Firstly, we show how the standard OCaml compiler’s parser can be replaced with our ap-
proach, yielding a complete parser with resolvable ambiguities that is both e�cient and usable
in practice. Secondly, we develop a new parser generator for encoding ambiguous gram-
mars, where non-trivial domain-speci�c languages (DSLs) can be de�ned using ambiguous
grammars with the static resolvable ambiguity property (Sections 5 and 6).

2 MOTIVATING RESOLVABLE AMBIGUITY AND OVERVIEW
Splitting ambiguities into two categories, resolvable and unresolvable, is not common praxis, thus
we begin this section by motivating resolvable ambiguity through examples. Next, we explain why
a static guarantee of resolvability is a strongly desirable property. Finally, we give an overview of
our approach and how it integrates into a conventional parsing approach.

2.1 Motivating Resolvable Ambiguity
Following our previous work [Palmkvist, Castegren, et al. 2021] we consider parsing to be a function
parse from programs to sets of ASTs. In this view, ambiguity is de�ned in terms of the size of the
returned set:

De�nition 2.1. A program ? is ambiguous if 9C1, C2 2 parse(?). C1 < C2, i.e., it can parse as at least
two distinct ASTs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:2 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

ambiguity in grammars [Danielsson and Norell 2011; de Souza Amorim and Visser 2020; Palmkvist
and Broman 2019; The dafny-lang community 2022, Section 7.1]. However, an ambiguous grammar
is only useful if all programs allowed by the grammar can be resolved. Speci�cally, it would be
directly dissatisfactory if a user can write a program that is parsed and reported by the compiler
to be ambiguous, but is impossible to rewrite in an unambiguous manner. State-of-the-art solu-
tions [Palmkvist, Castegren, et al. 2021] can perform comprehensive property-based testing, which
gives fairly good con�dence that the grammar is resolvably ambiguous, but there are no static
guarantees.
It is currently unknown whether the general decision problem of resolvable ambiguity for

context-free grammars is decidable, but it is likely not the case. As a consequence, it is an open
problem to design a solution that (i) is expressive enough to accept standard programming language
syntax, (ii) gives formal guarantees for the absence of unresolvable ambiguities statically, and (iii)
makes it possible to implement checkers and parsers that are e�cient and useful in practice. We say
that a solution to this problem handles statically resolvable ambiguity in a correct and e�cient way.
In this paper, we solve this open problem by designing a modular approach where the new

concept of a grouper is used together with a parser. The solution is extensible and expressive
(any standard parser can be used with the grouper), e�cient (we show how essential parts of the
standard OCaml parser can be e�ciently replaced with our approach), and correct (we formalize
the semantics in Coq and prove that all programs are resolvable given certain mild assumptions).
Key ideas of our solution include the concepts of splittable productions and grouping of operator
sequences, where the standard parser produces a sequence of operators that are later grouped into
an abstract syntax tree.

Concretely, we make the following contributions:
• We develop and formalize the novel approach of implicit and explicit grouping that allows
an end-user to resolve ambiguities. The grouper can be embedded in a traditional parser in a
straightforward manner (Section 3).

• We provide a mechanized proof of correctness in Coq, stating that only resolvable ambiguities
are possible, given certain mild assumptions about splittable productions (Section 4).

• We implement our approach as a library and evaluate it empirically using two case studies.
Firstly, we show how the standard OCaml compiler’s parser can be replaced with our ap-
proach, yielding a complete parser with resolvable ambiguities that is both e�cient and usable
in practice. Secondly, we develop a new parser generator for encoding ambiguous gram-
mars, where non-trivial domain-speci�c languages (DSLs) can be de�ned using ambiguous
grammars with the static resolvable ambiguity property (Sections 5 and 6).

2 MOTIVATING RESOLVABLE AMBIGUITY AND OVERVIEW
Splitting ambiguities into two categories, resolvable and unresolvable, is not common praxis, thus
we begin this section by motivating resolvable ambiguity through examples. Next, we explain why
a static guarantee of resolvability is a strongly desirable property. Finally, we give an overview of
our approach and how it integrates into a conventional parsing approach.

2.1 Motivating Resolvable Ambiguity
Following our previous work [Palmkvist, Castegren, et al. 2021] we consider parsing to be a function
parse from programs to sets of ASTs. In this view, ambiguity is de�ned in terms of the size of the
returned set:

De�nition 2.1. A program ? is ambiguous if 9C1, C2 2 parse(?). C1 < C2, i.e., it can parse as at least
two distinct ASTs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman. Resolvable
Ambiguity: Principled Resolution of Syntactically Ambiguous Programs. In
Proceedings of International Conference on Compiler Construction (CC), ACM 2021.
Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman.
Statically Resolvable Ambiguity. In Proceedings of the ACM on
Programming Languages, Issue POPL, ACM 2023.

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Ongoing Application Areas

TreePPL - a DSL for
phylogenetics

Equation-Based Modeling and
Physical Simulation

def model2 =
 world -- RevoluteJoint(yhat, q0_1) --
 Bar(1.5 * l, q0_1) --
 RevoluteJoint(yhat, q0_1) -- Bar(l, q0_2) -- f1

Robotics and CPS

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Ragnar

Open Source - MIT license

www.miking.org https://github.com/miking-lang

http://www.miking.org
https://github.com/miking-lang

Part I  
Research Group

David Broman

Part III 
Overview of the Miking Framework

Part II  
Workshop Overview

Ragnar

Getting involved

- Thesis research project
- Extending standard library
- Examples and documentation
- Fixing issues

Thanks for listening!

